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Preface

Cette these traite du calcul des parametres caractéristiques et des diagrammes de rayon-
nement des lignes de transmission utilisées dans les circuits hyperlréquences. Le calcul au
moyen de la méthode utilisée y inclut les effets de rayonnement et de couplage entre lignes
ct discontinuités de lignes pour des signaux de transmission avee une longuer d'onde com-
parable ou petite devant la structure considérée. On pense (p. ex. Hoceler Hoe92)) qu’avec
les moyens informatiques d’aujourd’hui la moddlisation de la transmission des signaux le
long des lignes par des algorithmes discrets introduits sur ordinateur est devenue appro-
priéc pour établir des moyens d'investigation et de developpement a l'aide d’ordinateurs
(Computer aided design ou CAD cn anglais) puissants. Ces outils informatiques servent a
caractériser et a développer des circuits micro-ondes. Nous avons choisi d'utiliser pour notre
étude une méthode basée sur un algorithme discret. La méthode simule la propagation dans
le temps des champs électromagnétiques en chaque point d’un espace 3D, c’est & dire qu’elle
trace la fonction des six composantes du champ en chaque point d'un domaine de calcul 3D
en fonction du temps. Cela est possible grace a un processus de répartition d’impulsions
sur une grille introduit sur ordinateur. Cette méthode dite méthode de la matrice des lignes
de lrunsmnission ou méthode T'1.M a été proposée premicrement pour des problemes 2D par
Johns ct Beurle en 1971 [Joh71]. Dans la suite elle a été élargic aux domaines de calcul 3D.
Elle a éLé mise a jour en 1987 par I'introduction d'un noeud condensé symétrique par Johns
[Joh87).

Le processus TLM n'est qu'un des algorithmes discrets dans le domaine temporel a
résoudre les équations de Maxwell en 3D pour des structures de géometrie complexe. 1l est
analogue a la méthode des différences finies dans le domaine temporel introduite par Yee
[Yee66]. En fait, des I'introduction de la méthode TLM par Johns et Beurle, différents au-
teurs ont essayé d'érablir une équivalence entre la méthode TLM et la méthode des différences
finies dans le domaine temporel ou FD-TD 1.

Un probléme important de l'utilisation des algorithmes discrets en 3D réside dans la
limitation de I'espace mémoire et la limitation en temps de calcul. Par exemple un caleul avec
100 x 100 x 100 nocuds demande 72 Mega octets de mémoire vive alors que pendant ce travail
(1993-1996) nous avons ¢té limité la plupart de temps au laboratoire a 50.5 Mega octets au
maximum?. Une possibilité pour réduire le domaine de calcul consiste a introduire des
conditions d’espace ouvert, c'est a dire d'appliquer aux limites du domaine de calcul des

'Malgré les assurances des auteurs, nous ne croyons pas que cctte équivalence ait été
démontrée d’une maniére exacte. Nous doutons méme que le processus T'LM soit vraiment
I’équivalent d'un processus a différences finies: Lia méthode TLM travaille dans 'espace des
impulsions alors que la méthode des diftérences finies travaille directement sur les champs; Il
nous semble discutable qu’une transformation entre les decux espaces puisse étre accomplic

par une simple transformation des parametres.
2Machine du type INTEL Peotium 60 MHz avee 60 MByte mémoire vive (dont 50.5 MByte utilisable)
sous gestion du compilateur Microsoft FL32 FORTRAN
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conditions qui permetient aux ondes de sortir librement. Cela permet de tronquer le domaine
de calcul proche des limites de la structure (le “dispositif ™) considérée. De plus le choix d'un
grille 4 mailles parallclépipédiques permet de simuler avee une haute résolution spatiale (ot
done une grand besoin d'espace mémoire) seulement les régions du domaine de caleul ou
la variation du champ est grande. La technique condition d’espace ouvert a le désavantage
d'introduire des réflexions supplémentaires aux limites du domaine de calenl.

Le caleul des caractéristiques des discontinuités micro-rubans doit tenir compte des er-
reurs introduites par ces réflexions. I5n plus, le processus TLM possede - comme chaque
processus sur grille -— une dispersion numérique inhérente qui contribue a U'erreur totale sur
le résultat. Bien que la méthode s’appuye directement sur les équations de Maxwell  sans
approximations supplémentaires - les résultats sont alors soumis a des errcurs d'origines
différentes et doivent étre interprétés d'une maniere assez précise.

Nous nous intéressons dans cette thése en particulier a des effets de rayonnement et de
couplage entre les interconnexions dans les circuits micro-rubans.

Nous allons introduire tout ’abord, dans un premier Chapitre, les techniques d’analyse
“quasi-TEM" afin de traiter les lignes micro-rubans. Ces techniques ont été developpées
surtout en 2D et ont permis d’établir des expressions analytiques (formules approximatives)
pour les lignes micro-rubans.

Les résultats basés sur I'approximation TEM sont valables seulement en régime basse
fréquence, du fait que 'approximation TEM suppose que la longueur d'onde soit grande
devant la structure considérée.

Dans le deuxiéme Chapitre nous allons présenter la méthode TLM. Nous avons choisi de
I'introduire sur la base de I'article de LoVetri et Simons [LoV93] qui permet de comprendre
le processus TLM indépendamment des schémas de lignes de transmission utilisés & Vorigine
de cette méthode. Afin d'expliguer Porigine de la fechnique de stubs -— introdnite afin de
simuler des diélectriques et la technique de changement de maillage nous ¢tions guand
méme obligés de reprendre certaines bases “historiques” de la méthode. Nous pensons que
dans un avenir proche il devrait étre possible de fonder la méthode TLM entiérement sur
des dérivations mathématiques sans l'intermédiaire d'arguments par équivalcence.

Daps un troisicme Chapitre nous introduisons le probleme de 'espace ouvert et la théorie
de la condition d’extrapolation basée sur 'équation unidirectionclle — qui est une théorie
exacte et complétement comprise.  Malheurcusement, particulicrement en espace 31, des
instabilités numériques semblent empécher 'application cfficace de cette théorie pour tron-
quer le domaine de caleul. Nous présentons des résultats numériques ct des amdéliorations
(dissipation numérique, filtrage numérique cn temporel) qui devraient rendre cette méthode
stable. Dans le méme Chapitre nous présentons ensuite la méthode d’introduction de mi-
licux absorbants aux limites du domaine de calcul. Nous décrivons la théorie des couches
absorbantes parfaites de Bércnger et présentons des résultats numériques sur une applica-
tion simplifiée de ces conditions pour la méthode TLM et le nocud condensé symétrique.
Dans le quatri¢me Chapitre nous décrivons la mani¢re de faire des calculs pour extraire les
caractéristiques des discontinuités micro-rubans — y compris les effets de rayonnement et
couplage entre lignes et discontinuités de lignes cn régime haute fréquence. Nous présentons
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Chapitre 1

Introduction a ’analyse des
lignes micro-rubans

1.1 Introduction

La ligne micro-ruban représente la deuxieme génération de lignes de transmission dans des
circuits hyperfréquences.  Son précurscur, la ligne ruban (“stripline”) a été inventé aux
environs de 1949, La technologic micro-ruban est réalisable a partir de la fabrication des
substrats di¢lectriques ou ferrites & pertes faibles comme 'époxy ou le verre téflon.

l.e Chapitre contient une discussion de quelques techniques semi-analytiques et numériques
d’analyse basées sur 'approximation TLIM des lignes micro-rubans. Ces techniques don-
nent des formules approximatives sur les impédances propres, les constantes de propagation
ct la permittivité relative effective < off d’une ligne avec un certain substrat. Les tech-
niques présentées icl sont utilisées aussi en dehors de 'approximation TEM. Par exemple,
la méthode des différences finies ou la méthode des momentis ntilisée afin de resoudre les
équations variationcelles ou les équations intégrales sont capables de donner des résultats
pour des fréquences élevées ol approximation TEM n'est plus valable. Nous nous re-
streigonons a 'analyse quasi-TEM puisque cela nous permet d'introduire les principes de base
des méthodes semi-analytiques et numériques d’analyse des lignes micro-ruban de manicre
exemplaire. Une discussion plus complete des méthodes de calcul pour déterminer les pro-
prietés des lignes micro-ruban et des discontinuitées de lignes micro-ruban ainsi que des
formules semi-analytiques obtenues a partir de ces méthodes est donnée par exemple dans
Gupta et al. [Gup79]. Unc discussion des techniques semi-analytiques pour des fréquences
élevies basées sur la théorie des ondes se trouve dans P'article de Mittra ct Itoh [You74).

Les méthodes basées sur l'approximation TEM sont quasi-statiques, c’est a dire val-
ables sculement pour des fréquences ou la structure est petite devant la longueur d’onde.
Les résultats obtenus sont alors limités en fréquence a quelques Gigahertz. Par contre,
I'utilisation des circuits hyperfréquences se fait aujourd’hui pour des fréquences de plus en
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8 Introduction

plus élevées.

Nous allons voir dans le Chapitre qui suit une méthode dynamique. la méthode TLM. sur
laquelle nous nous sommes appuyés. Contrairement aux méthodes statiques. les méthodes
dynamiques! tiennent enticrement compte des effets des hautes-fréquences, ¢'est a dire des
effets lorsque la longueur d'onde devient comparable ou petite devant la structure considérée.
Les méthodes dynamiques sont nécessaires pour des fréquences de plusicurs dizaines de
Gigahertz, on I'effet de dispersion des signaux le long des lignes ne peut plus étre néglige.

Le principal but du Chapitre est d'introduire quelques fondements des méthodes semi-
analytiques et numériques, autres que la méthode TLM utilisée dans la suite, afin de placer
ce travail dans I'ensemble des investigations sur la caractérisation des lignes micro-ruban.

1.2 Discussion préliminaire

Nous allons discuter dans la suite un certain nombre de techniques ol nous supposons
que la propagation se fait pratiquement en mode TEM (“*quasi-TEM?) afin de déterminer
analytiquement les caractéristiques d’une ligne micro-ruban. Nous y faisons I'approximation
que la longucur d'onde en espace libre est grande devant la largeur du ruban et grande
devant I'épaisscur du substrat. La figure 1.1 montre plusicurs sections droites de lignes de
transmnission micro-ruban typiques.

A I'exemple de la section droite standard montrée dans Fig. 1.1(a) nous allons expliquer
pourquoi 'analyse quasi-TIEM est valable pour des basses fréquences sculement: Les com-
posantes électriques et magnétiques de la solution caractéristique de la structure peuvent
¢tre exprimées au moyen d'un potentiel scalaire ¢ qui doit satisfaire

V2 + (K? - 3%)e =0 dans V'air (1.1)
V24 (k2 - 3% =0 dans le substrat (1.2)

ou & = 27/ est le nombre d’onde en espace libre, /3 est la constante de phase et Uindex
“L” de l'operateur nabla indique la dérivée dans les directions de la section droite seulement.
Pour ¢, = 1 la solntion de premicr ordre cst le mode TEM avec 8 = k. Pour ce cas
limite, le potentiel ¢ satisfait I'équation de Laplace dans la scction droite ct ne crée aucunc
composante longitudinale du champ é¢lecirique ou du champ magnétique. Maintenant on
considere ¢ # 1 comme perturbation au cas ¢, = 1. L’cflet dc cette perturbation est petit
lorsque la fréquence (et donc k) sont petits. La solution quasi-TEM peut donce étre regardée
comme solution d’ordre zéro des équations exactes 1.1 et 1.2. Les résultats obienus avee la
méthode quasi-TIEM ne sont donc plus valables lorsque k devient grand.

Sous I'approximation TEM, une ligne micro-ruban est décrite de fagon adéquate par
deux parameétres, I'impédance caractéristique 7 et la constante de propagation v = «a + j3.
La théorie des lignes pour une ligne a pertes faibles nous donne les relations

'En anglais on parle dans ce contexte de “full wave analysis”ou “full hybrid mode
analysis”.
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(a) (©)

=] L=
(b) (d)

I'igure 1.1:  Section droite de cer-
taines lignes de lransminission micro-

ruban d’aprés [You74).
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L 1 R G
/= - - — = — 1.3
7 ([ t3 ( Jol ju:(')] (1-3)
« ‘I‘;(' [-I;-r(—',; 3=wVLC (1.4)

ou iR, G, L et € sont la résistance, la conductance, 'inductance et la capacité linéigue
d’une ligne de transmission infiniment longue; La fréquence w est une fréquence angulaire. o
est la constante d'atténuation et 3 est la constante de phase. Pour une ligne sans pertes on
aR=G=0,a=0et Z est réel. Les valeurs de Z ct B peuvent aussi bien ¢tre exprimées
au moyen de la vitesse de phase v = I/\/ﬁ comme

B=wfv 72 =1/(vC) (1.3)

Nous notons que les effets de dispersion sont négligés dans approximation TIEIIM. La
vitesse de phase est alors égale a la vitesse de groupe.

Nous allons démontrer que pour un probleme TEM sans pertes, le probleme de la
détermination de 8 ct Z revient & déterminer la capacité linédique C. Considtrons deux
configurations de la figure 1.1(a): La premi¢re a un diélectrique avec une permittivité rel-
ative ¢,. # 1. La deuxitme est unc ligne homogene TEM obtenue en cnlevant le substrat,
c'est a dire ¢, = 1. Dans ce cas v = g, on a alors

8o = w/eo 7 =1/(coC) (1.6)

ol ¢p est la vitesse de la lumicre cn espace libre et 'indice 0 indique le cas ¢ = 1. Si le
substrat n'est pas magnétique, le valeur de l'induciance L est la méme pour les deux lignes.
On a alors

Co 1
7 = Zo 2= ——
°VC T &Vl

C w [C .
B ﬁO\/a=a\/-cTo (1.7)

ou Zy et (3 sont donnés par I'Eqn. 1.6. L'équation 1.7 implique que Z et 3 peuvent étre
obtenus par les capacités linéiques C et (g de la ligne micro-ruban et de la ligne micro-ruban
sans substrat.

Dans la suite nous allons décrire certaines techniques quasi-TEM afin d’évaluer la ca-
pacité des lignes micro-rubans de type Fig. 1.1. La discussion est fondée sur un article de
Mittra ct al. [Mit74] qui lui-méme est fondé sur des articles parus entre 1965 ct 1974.
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frontiére diélectrique

Jir

Figure 1.2: Section droite d'une ligne
de transmission 1nicro-ruban d'aprés
[You74], plan z, x + jy = z.

1.3 Meéthode de la transformation conforme
modifiée

La méthode de la transformation conforme (en plan complexe) a été élaborée a lorigine
pour des lignes ruban. Une méthode modifiée a é1é proposce par Wheeler [Whe65]. Wheeler
a introduit le facteur de remplissage qui est un concept pratique pour déerire les paramétres
d’une ligne micro-ruban.

La partie droite de la section droite d'une ligne micro-ruban est montrée dans la figure
1.2

Un mur magnétique est placé le long de P'axe de symétrie y. L’épaisscur du ruban est
considérée comme infiniment petite. Dans la premicre étape de la technique de Wheeler
on applique une transformation conforme de telle mani¢re quune nouvelle géométrie plus
simple soit obtenue. Pour un ruban large. la transformation est donnée par
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1
2 =jr+duwh g -2 (1.8)

avee d ~ ¢ pour §'/2 > 1 o g’ est la largeur effective des couches paralltles dans le
plan transformé montré dans la figure 1.3.

La transformation de z & 2’ trapsforme la ligne en une structure de conches parallcles
confinée par deux murs magnétiques verticaux (=’ = 0 et 2/ = ¢'). De plus, linterface
di¢lectrique-air planaire dans la figure 1.2 se transforme en une surface courbée 3-7 dans la
figure 1.3(a). Puisqu’une solution analytique exacte est difficile & obtenir pour ce probléme
avec une surface courbée, des approximations supplémentaires sont nécessaires. Nous appro-
chons la surface 75’ inclus par la courbe 3-7 et les lignes 3-37 et 3'-7 par deux rectangles avec
des surfaces ws” et (s’ — §”’) montrées dans la figure 1.3(b). La surface ms” ajoute s” a la
largeur de la région & droite (@’ < =’ < ¢') et est appelée alors la “partic parallele”. [’autre
surface 7(s’ — ") est en série avec la région d’espace libre msp. Nous combinons alors ces
deux effets afin d’approcher la région originale qui était remplic en partie. La région cntourée
par les points 1 2 3 et 3" dans la Ggure 1.3(a) est alors approchée par la région entourée par
les points | 2 3 et 3" dans la figure 1.3(c¢) constituée d'un diélectrique de largeur s. Le caleul
de la capacité est alors simple du fait de la nature planaire dn remplissage di¢lectrique.

La largeur cffective s peut-étre exprimée comme

s=s5"+(s=5")/er (1.9)

I.e facteur de remplissage (“filling factor”) peut étre défini comme

q=(9 —a +s)/d (1.10)
La constante didlectrique effective peut alors étre exprimée au moyen du facteur de

remplissage par:

Coff = (1 = q) + qc¢r (1.11)
La capacité linéique est alors donnée par C = €,4Cp ot Cp est la capacité linéique de la
ligne sans substrat. Le probleme est alors réduit a la recherche de valeurs approximatives

pour s, s” ou gq.
Unc expression approximative pour un ruban de grande largeur (largeur du ruban grande
devant 'épaisseur du substrat) a été donnée par Wheeler:

s’ = 0.732[a’ - cosh™'(0.358 cosh o’ + 0.953))
s" = 0.386—1/2(d-1) (1.12)

La constante diélectrique effective peut alors étre calculée au moyen de I'Eqn. 1.12 et des
Egs. 1.9, 1.10 et 1.11.

Daans le cas d’un ruban de petite largeur (largeur du ruban petite devant 1'épaisseur du
substrat) la constante diélectrique effective est donnée d’apres Wheeler par:
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b=nx

()

: ,

®)

~
0
~—

Figure 1.3: Section droite d'une ligne
de  transmnission nicro-ruban d’aprés
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S B 1.4
tr ¥ v [ln%+—ln—} (1.13)
avee

16 1 say?
7
hW=in—+< (—)
a 8\
ol a est la mi-largeur du ruban et b est 'épaisscur du substrat.
Wheeler donne également les expressions pour les impédances caractéristiques Zg dans
le cas d'un ruban de grande largeur:

, 377 [2a o+ 1 a ) =177
/,o_ﬁ[jfo.sssT — {ln(g—.-O..(M),—1.401}1—0.1(»0 7 } (1.14)

ct dans le cas d'un ruban de petite largeur:

377 4b 1 a2 le¢-—1 m 1. 4 ]
Zp=—r (2] + s (2) -2 o=+ —lo— 115
' o r:étl[n(a)r8(b) 2<,+1{“2 c,“n}J (1.15)

Afin de dimensionner des lignes micro-ruban, on s'intéresse en pratique aux valeurs b/a
pour une impdédance caractéristique donnée. Wheeler donne les valeurs /a dans le cas d’un

ruban de grande largeur:

@ 377w L1 ( 377w ])
- = — — - In —_
b 2\/L,~Zo l;,-Zo

¢ — 1 [ 37T 0.517)
| —_— -1 0.293 —
T " (2\/—“ch0 ) * o

et dans le cas d'un ruban de petite largeur:

1
4

' _ t+17 ¢ —1 0.120
h,_‘/ %0 (r+l(0.226+ ” ) (1.17)

Des représentations graphiques pour l'impédance caractéristique et la longucur d'onde
pour le mode principal sont données dans les figures 1.4 et 1.5.

1
exp(h’) - 3 exp(—h') (1.16)

Qo

ou
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1.4 Méthode des différences finies et méthode de relax-
ation

On peut déterminer la distribution des champs dans la section droite directement au moyen
d’une méthode a différences finies. La distribution des champs ¢lle-méme permet ensuite de
calculer la capacité lindique ¢ de la ligne. Les paramétres 7 et /3 peuvent alors étre obtenus
avee 'approximation T1XM vue dans la Section précédente.

Le principe de base de la méthode des différences finies consiste en une discréiisation de
la distribution des champs. On suppose ici que les valeurs pour les potentiels sont connues
seulement sur les points d'intersection d'une grille 2D. Les potentiels peuvent étre determinés
au moyen de la méthode de relaxation en utilisant des approximatons successives comme
suit: Considérons une grille large ou chaque point représente une valeur pour le potentiel
¢(x,y). Le potenticl au point A est noté ¢4. Nous developpons le potentiel ¢ autour du
point A en une scrie de Taylor afin de trouver les potentiels aux points voisins B, C, D et
IY (voir figure 1.6). Les valeurs pour le potentiel en ces points sont

o = oa+hd b, + %h‘zai«m + %h"djm + O(ht)
b = Ba—hdypa g h200n = h B0 +O(hY)
ob = Ga—hdudut h20Rba — 3h00l0a + O(hY)
o = ®a+hdp. - %h.?t)g(/m + ;—!h?a;’m + O(h*) (1.18)

ou O(h") conticnt les termes en A et au dessus. L’addition des expressions précédentes

donne une équation pour le potentiel ¢

ép + dc + Op + b =164 + h? 26 + I}o] , + O(R!) (1.19)

Cette équation peut maintenant étre utilisée pour résoudre l'équation de Laplace du
potentiel ¢ dans la section droite

2o+ 020 =0 (1.20)
En substituant I'Eiqn. 1.20 dans I'Eqn. 1.19 on obticnt (en négligeant les termes d’ordre
O(h")):
. L. L
oa = Z(¢B +dc +oép + 9r) (1.21)

[la méthode de relaxation consiste a déterminer au pas d'itération n + 1 pour chaque
point de la grille U'errcur résiduelle (le résidu) pour le pas n au point A
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1 )
=0k = (0] T 0 T o) 8F) (1.22)

et i corriger la valeur du potenticl ¢ au point A en utilisant le résidu commme suit

O = o —al’ (1.23)

Lie facteur « s'appelle le facteur d'aceélération. Si 0 <« < 1 on parle d’une méthode de

sous-relaxation, si | < a < 2 on parle d'une méthode de sur-relaxation. On trouve que la

convergence est. la plus rapide pour une sur-relaxation (successive over-relaxation ou SOR)
[Gre6s).

[expression pour le potentiel demande une correction lorsqu’on se trouve aux interfaces

di¢lectrique-air comme le montre la figure 1.6(b). I’équation 1.21 doit ¥ étre remplacée par

1
da = Z(dﬁ'u + ¢p) (eroc + Or) (1.24)

+ L
2(er + 1)
Des équations pour des points aux interfaces diverses ont été données par Green [Gre65).
Pour unc discussion génerale nous renvoyons a Wexler [Wex69).
A partir du potentiel on trouve ais¢ment la capacité linéique. Pour cela on utilise la
relation pour la charge linédique @ (en utilisant la loi de Ganss en 2D)

Q= pdl = / ¢ O (1.25)
v L

ou L est un contour entourant le ruban, n est la direction normale vers Pextérieur et e,
est égale & un si le point se trouve dans l'air ou égale a la permittivité électrique si le point se
trouve dans le di¢lectrique. Le valeur d,¢ peut étre obtenue le long du contour pour chaque
point P en prenant la valeur a gauche ¢4 ct la valeur a droite ¢ g & la distance h comme

Ondp = (g — d4)/2h

[.a capacité lindique est alors obtenue a partir de la charge linéique @ par:

C=Q/W

ou V; ecst le potentiel entre le ruban et la masse. Afin d'obtenir I'impédance car-
actéristique ct la constante de phase 3 il faut refaire le calcul sans diélectrique afin de
déterminer la capacité linéique Cj.

La figurc 1.7 montrc quelques exemples d'impédances caractéristiques calculées pour unc
ligne micro-ruban enfermée dans un boitier.

Commentaires:
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1. La méthode des différences finies peut étre également établie pour les champs électriques
et magnétiques.  Au lieu de simuler 'équation statique de Poisson il s’agit alors de
trouver des schémas qui simulent les équations de Maxwell.  Ces méthodes sont -
contrairement a la méthode présentée ici dynamigues, c¢’est a dire une iteracion
correspond réellement & un pas de temps. Les méthodes dyoamiques donnent acees
direct a 'impédance et —- toujours sous 'approximation TEM - i la capacité linéigue
ct. a la constante de phase 3.

2. Les équations du type 1.21 et 1.24 peuvent étre rassemblées afin de les écrire sous forme
matriciclle A,ynd,n = ba (@in est le vecteur contenant le potentiel ¢ aux 2 points de la
grille). Il existent des méthodes autres que la méthode de relaxation, par exemple des
méthodes d'inversion de la matrice A,,, (la litterature parle de “méthodes directes”),
des méthodes de séparation des opérateurs (“operator-splitting”) et des méthodes de
changement de direction (“alternating-direction” ou ADI) [Pre86].

1.5 Meéthode variationnelle dans le domaine
fréquentiel

Une méthode qui utilise un approche variationnelle dans le domaine des fréquences spatiales
(espace du vecteur d'onde k) était proposcée par Yamashita et Mitra 1968 [Yam68|. La
technique demande - - p. ex. par rapport a la méthode de relaxation — comparativement
peu d’espace mémoire et de temps de caleul.

Nous allons considérer la ligne micro-ruban blindée avec deux substrats différents montrée
dans la figure 1.8. La ligne simple (Fig. 1.1(a)) peut étre obtenue a partir de cette structure
avec (] = 3, €3 =1 et d — 00, ol €}, €3 et ¢ sont les constantes diélectriques relatives.
Nous allons caleuler la capacité lindique C' pour cette structure.

Nous partirons de 1'équation de Poisson pour le potentiel dans la section droite du ruban
en supposant que le ruban est infiniment mince et en introduisant un espace de largeur
p centre le ruban et la couche diélectrique. La structure de la Fig. 1.8 est obtcnue pour
lim,_o apres application des conditions aux limites. Cette modification permet de séparer
les conditions aux limites & l'interface diélectrique de 1'équation de continuité a4 y = h + s.
[’équation de Poisson s’éerit

Vid(x,y) = =< 'p(z) 8y — h - s — p) (1.26)

ol p(x) est la distribution de la charge linéique dans le ruban, p(x) = 0 pour |z| > w/2,
¢ est la permittivité ct & est la fonction delta de Dirac.

La charge est distribuée le long du ruban. La relation entre la capacité C' ot la charge p
est donnée par

1 ] w/2
o) POt ) (1.27)



Mdthode variationnelle 21
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Figure 1.7: Inpédance caractéristique
d'une lignc micro-ruban calculée par
Stinchelfer [Sti68] d’apres [You74).
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ol Q = J:’u/jz p(x)dx est la charge lindique du ruban. [Véquation 1.27 est une équation
variatioonelle qui détermine la distribution de la charge si on demande que la capacité
devienne maximale. Afin de résoudre cette équation. nous devrons connaitre par avance le
potenticl o(x,y) pour y = h -+ s. Une solution de Péquation 1.26 pour y = h + 5 est donnée
par

w/2

1
o(r,h+s) = ” / . p(2"YG(x, 2’ h + s)dx’ (1.28)

_w/

ot (7(x,7’; h+ s) est la fonction de Green évaluée a y = h + 5. La fonction de Green est
déterminée par les conditions aux limites entre les différents milicux. Nous allons construire
la fonction de Green en fréquenticel et nous allons ensuite résoudre 'édquation de variation
correspondant 4 'Eqn. 1.27 en fréquentiel comme suit: Une transformation de Fourier entre
teraer 1 ot Hecn: . e n e FLLY — [O° s 1 : :
Pespace z et espace & est donnée par f(K) = f°,_ f(x) exp(jkhz) dz. L'équation de Poisson
Eqn. 1.26 s’écrit alors

s 7| k) = = 150) oty — B =5 = ) (1.29)
] ‘

ot ¢(k,y) est la transformée de Fourier de ¢(z,y) ct j(k) est la transformée de Fourier
de p(x).

La répresentation la plus génerale pour y # h + 5 + p est une combinaison de exp(ky)
et exp(—ky). Dans le cas limite d — oo il existe seulement exp(—Ay) dans la région sans
limites. Dans le cas d # oo les conditions aux interfaces pour les potentiels en espace &k sont
doanées par:

&(k.0) = 0
dk,h+0) = ok, h—0)
<L ok, b+ 0) Lotk h—0)
25 OK = (5P\k. L —
(-_)dy‘p(v ldyq)
dlk,h+~5+0) = @(k,h+5-0)
d - d -

S — ok h+s5+0) = —ok,h+5—0

(3(ly(f)( ' S ) (ldy¢( L 5 )

okh+s+p+0) = ok,h+s+p—0)

d - d - 1
35—ok,h+s+p+ = e3—o(k, h+ - 0) — —p(k
csdy¢>(k,h-> p+0) chytp( v+ s+p—0) (Op()

Mk, h+s+d+0) = 0 (1.30)

Ces équations déterminent les coeflicients des potentiels dans leur représentation la plus
générale. Pour p — 0 la solution pour le potentiel sur le ruban est égale a 'équation 1.28
dans 'espace &
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. 1 .
o(k.h + sy = —p(k)G(K) (1.31)
«
avee la transformée Fourier de la fonction de Green
i coth([kiR) + ¢ coth(jk|s)

ik] {¢* coth(|h|R) [c; coth(Ik]|d) + ¢ coth(ik]s)]
+ ¢ [t5 + ¢3 coth(]k]d) coth(|Ais)]} (1.32)

C(k)

La connaissance de q-)(k,h, + 5) nous permet de résoudre 'équation variationnelle 1.27
dans le domaine fréquenticl. IEn utilisant la relation de Parseval nous obtenons a partir de
I'équation 1.27, une éguation dans le domaine fréquentiel

L S R g (1.33)
¢ 2aQ? J_, T '

Cette formule est numériquement plus facile a traiter que I'équation 1.27 puisque la
fonction ¢ cst calculée par un simple produit de la charge avec la fonction de Green (cf.
Fqn. 1.31), alors que le calcul de ¢ demande une convolution de la charge avec la fonction
de Green (cf. Eqn. 1.28).

Jusqu’ici nous avons considéré un ruban infiniment mince. Il est relativement simple
de généraliser le résultat pour unc épaisseur petite en remplagant ¢(k. h + s) par la valeur
moyenne entre o(k, b+ s) et d(k, h + 5 +t) ot d(k, h— 5+ t) est le potenticl & y = h+ s + L.
Pour cela il faut supposer une variation du potentiel dans la direction de I'axe y. Mittra ot
Itho supposent une variation telle que

sinh {jk]|(d — )]

b (k) &k, b + s) (1.34)

Gk, b+ s+ 1) =

La capacité linéique est alors

= ——1-— / pd(ke, b+ s)h(k)dk: (1.35)

2r 0 J-cc

Ql=

ol

- 1 sinh([k](d — t)] .
h(k) = 3 {1 + bR } (1.36)

En introduisant le potenticl de I'Eqn. 1.31 dans I'llqn. 1.36, on obtient la capacité linéique
tenant compte de I'épaisseur du ruban

1 1 ~ N2 AN T .
&= o /0 (k)2 () dk (1.37)

La capacilé sans substrai Co est obtenue pour €] = ¢ = ¢3 = 1 dans I'l2qn. 1.37.
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.’équation 1.37 détermine la distribution de la charge si on demande que la capacité
devienne maximale. La pature variationnelle de cette équation introduit une errcur du
deuxieme ordre seulement pour une approximation de (k). Le choix de p(k) tel que le
valeur de ¢ devienne maximale donne le résultat le plus proche de la valeur de la capacité.
Plusicurs fonctions de test ont été utilisées par Yamashita et Mittra [Yan68] et Yamashita
(Yam68b]. Des résultats numériques ont été publiés pour deux fonctions de test différentes.
Ce sont:

o - {§ s
pk) _ 2sin(kw/2) [sin(kw/1)]? .
Q kw/2 [ kw/4 } (1.38)
ol
+ 12z/w)® —w/: w/
ple) = { (l) "2/l a.uu{c-‘,zmgt.:,:t:.S /2
(k) Bsin(kw/2) 12
Q@ 8 kw/2  5(kw/2)?
» 2sin(kw/2) sin?(kw/4) .y
x {cos(kw/?)— Kw/2 (kw/A)? } (1.39)

Les figures 1.9 a 1.13 preésentent les résultats numériques pour les lignes micro-ruban ou
(] =¢3=¢% ¢ =1ctd— oo. Lafonction de test de I'Eqn. 1.38 a été utilisée pour calculer
ces données. La figure 1.10 présente une comparaison des résultats obtenus en utilisant
I'Eqn. 1.38 avee les résultats de Wheeler. De plus, une comparaison aveec des résultats
expérimentaux obtenus par Arditi [Ard55], Dukes [Dux56] et Hyltin [Hyl65] cst faite sur les
figures 1.11 et 1.13. Des résultats numériques ont été calculés en utilisant I'Eqn. 1.39 pour
fonction de test. I1s sont présentés sur les figures 1.14 4 1.17.

Avant de terminer la discussion nous allons présenter une procédure systématique pour
la distribution de la charge. Cela est accompli via I'application de la méthode de Galerkin ou
de la procédure de Rayleigh-Ritz dans le domaine de transformation [War71]. Nous décrivons
la procédure ci-dessous.

Ecrivons d’abord 1'équation 1.31 comme

di(k, h + 5) + do(k, h + 5) = (1/e0) p(K)g(k) (1.40)
ou
_ w/2
di(k,h+s) = / ¢(z, h.+ s) exp(gkz)dr
-—w/2
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Figure 1.10: Resultals calculés pour
limpédance caractéristique et compara-
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_ —w/f?2 oo
do(k,h+s) = / o(x. h + s)exp(jhz)dr + / O(x. h + s)exp(Jkx)dzx
2

—oo w

(1.41)

Notons que ®; est connu car o(z, b+ 8) st donné pour |z < w2 (sur le ruban). Par
contre, ég n'est pas connu car ¢(x, b — ) n'est pas connu pour |z| > w/2 (en debors du
ruban).

Nous allons appliquer mainienant la méthode de Galerkin afin de determiner la distribu-
tion de la charge p(k) dans I'équation 1.40. Pour cela nous developons (k) en fonctions de
base pp (k) avee des cocefficients (*les poids™)

N
Ak) = capu(k) (1.42)

n=1

Nous choisissons des fonctions de base p,(k) telles que leurs transformées inverses ont
un support limité dans le domaine spatial, c'est a dire

() = :-;;/_oo pn(k) exp(-jkz)dk, |z} > w/2 (1.43)

Ensuite, 'Eqn. 1.42 est substituée dans 'Eqn. 1.40 et le produit scalaire avec p,(k),
k=1,2,3... cst appliqué des deux cotés de I'équation qui en résulte.
Cela mene a une équation matriciclle de la forme

N
bin =) _ HKinnta m=12,...,N (1.44)
n=1
ol
bin = / ﬁnt(k)éz (k1 h + S)dk
w/2
= 27r/ pm(x)di(z, I + s)dz (1.45)
-w/2
Kom = (1/c0) [ pmlk)3(0)n(R)ak (1.46)
—oc

Ici, les éléments by, ont éué calculés en utilisant le theoreme de Parseval. L'application de
ce théoréme aide a éliminer 'inconnue ¢g qui n'est plus présente dans I'Eqn. 1.45. L'intégrale
du produit @g et j,, ne contribue pas & I'équation 1.45 car la transformée inverse de ces
fonctions cst non-nulle seulement dans des régions complémentaires, ainsi leur produit est
nul.
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Figure 1.14: Impédance caraclérislique
calculce. ¢ = 9.9 (saphir); ¢§ = 1.0;
s = 0; t = 0. Yamashita [ Yam68b/
d’apres [You7/).
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s =0; t =0.02h. Yamashita [Yan68b/
d’aprés [You74).
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Figure 1.16:  Longucur d’onde guidée
calculée. ¢f = 9.9 (saphir); ¢ = 1.0;
s = 0; t = 0. Yamashila [Yam68b|
d’aprés [You7{/.
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Figure [.17: Longueur d'onde guidée
calculée. ¢ = 9.9 (saphir); ¢ = 1.0;
s = 0; t = 0.02h. Yarnashita [Yan68b/
d’aprés [You7//.

Alin de déterminer la distribution de la charge, on cherche maintenant i résoudre I'équation
1.44, c’est a dire 4 déterminer les coefficients ¢,. La capacité linéique est alors obtenue en
fonction des coefficicnts ¢, en utilisant la formule

1 o w/?2
' =— (;,,/ n(x)dx 1.47
7 > o’ (x) (1.47)

n=1

ou Vi est le potenticl entre le ruban et la masse. L'équation 1.47 doane une valeur sta-
tionnaire de C ct la précision du résultat peut étre améliorée en choisissant N suffisamment
grand. L’expéricnce montre que I'amélioration de la précision est en général petite apres
unc amélioration initiale si V est augmenté i partir d’une valeur tres petite.
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1.6 Meéthode des équations intégrales

Jusqu'a présent nous avons discuté trois techniques différentes pour déterminer les car-
actéristiques d'une ligne micro-ruban. Deux de ces méthodes, la méthode de transformation
conforme et la méthode variationelle sont utilisées surtout lorsque 'épaisscur du ruban est
faible. Pourtant, dans certaines applications pratiques de circuits micro-ondes. I'effet d'une
épaisscur finie du ruban ne peut pas étre négligé.

Puisque la méthode de relaxation est en principe une méthode numérique, elle peut etre
appliquée au cas d'une épaisseur queleonque du ruban. Le principal désavantage de cette
méthode reste néanmoins que sa convergence est plutot lente.

Nous allons présenter dans la suite une méthode basée sur des équations intégrales pour
résoudre le probléme de I'épaisscur du ruban d'une fagon eflicace. Considerons la section
droite d’unce ligne de transmission micro-ruban montrée sur la figure 1.18. Le potentiel est
determiné par I'équation de Poisson:

Vio(r,y) = —(1/€)p(z, y) (1.48)

Une fonction de Green G(z,y:xo, yo) est donnée par:

VG (z.y: w0, y0) = —(1/)d(z — %0)8(y — vo) (1.49)

ou G satisfait la méme condition aux limites et condition de continuité sauf pour la
condition de source. lLa fonction de Green est le potentiel au point (7,y) du & une unité
de charge au point (zg.10). En appliquant le principe de superposition. le potentiel ¢ dans
I'Eqn. 1.48 est donné par

(x.y) = / G(z,y; w0, ¥o)p(xo. yo)dlo (1.50)

ou l'intégrale est définie sur la surface du conducteur.

Nous allons construire la fonction de Green comme suit. D’abord, nous développons la
fonction de Green en une série de Fourier dans la direction de la coordonné z. 1.’équation
a dérivées particlles (Eqn. 1.49) est alors réduite & un ensemble d’équations différenticlles
ordinaires de la variable y. La solution de chaque équation differentielle ordinaire dans
toutes les régions du diélectrique est une combinaison linéaire de fonctions hyperboliques.
On applique les conditions aux limites et les conditions d'interface & chacune de ces solutions
ct on détermine ainsi les amplitudes. En substituant ces coeflicicnts dans 1'équation 1.49 on
déterminc ainsi la fonction de Green. Si la source est localisée sclon hy -+ by < 3o < b ct
la condition a la limite du conducteur extérieur est G = 0, I'expression pour la fonction de
Green est donnée [Yan70] [Yan71] par

— 2 Aalyo—hi—hy) . na(b—y)
CJ(-L‘ Y5 Zo, yO) - X:l 1"‘_(5 A,.,(h,;,) sinh l a l

n=




l:' . . .
“quations intégrales

Figure 1.18: Section droite d’une ligne
de lransmission micro-ruban avec une
€paisseur finie et avec plisieurs couches
diélectriques placées dans une cavité

d’aprés [You74).
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T T nwT

X sin (rmro)s,m(_:r)’ hi—h, <y <y<db
a a

— 2 Anlyo—hi—hy) . To(b- y)J

= Z - sinh .

— nwey An(hs) . a
; nwr:

X sin ("Tro) sin (—) s hh+hy<y<y <
a a

(1.51)
ou

A, = ¢]¢;cosh(nmh/a)cosh(nmhy/a) sinh(nmy/a)
e3¢5 sinh(nmhy /a) cosh(nmhy /a) cosh(nmy/a)
3¢} cosh(nmh, /a) sinh(nmhy/a) cosh(nmy/a)
¢3¢3 sinh(nrh, fa) sinh(nmhy/a) sinh(nry/a)

It

(1.52)

Lles représentations pour les fonctions de Green dans les régions diélectriques ne con-
tribuent pas, puisqu'on suppose qu'il n'y a pas de charges dans les didlectriques.

L’équation pour le potenticl kqn. 1.50 peut alors étre transformée en une forme ma-
tricielle par la méthode de discrétisation conventionelle. Les résultats obienus en résolvant

cette équation matricielle sont présentés dans la figure 1.19.
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0 00
0.02
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Iligure 1.19: TInpédance camcléristique
d’une ligne micro-ruban montrée dans
la figure 1.185; ¢ = ¢§ =1, ¢ = 9.35,
h; = hg = 04b, hy = 0.2b, w = 0.5b.
Yamashita [Yam71] d’aprés [You7{).
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Chapitre 2

La méthode TLM: Calcul des
champs électromagnétiques en
régime temporel

2.1 Introduction

Une méthode permettant de faire des simulations dans le domaine temporel des champs
¢lectromagnétiques est la méthode des lignes de transmission ou méthode TLM. Elle a éué
introduite par Johns et Beurle [Joh71]. La propagation des champs électromagnétiques y
cst simulée par la propagation ct la répartition des impulsions dans une grille introduite sur
ordinateur, constituée de lignes de transmission idéales et de nocuds anx intersections des
lignes. La propagation des impulsions le long des lignes de transmission et la propagation
des champs électromagnétiques en espace libre sont reliées par 'équivalence de 'équation des
lignes sans pertes ¢t 'équation d’onde. L'origine de la méthode TLM et ses améliorations,
ses sources d'erreurs inhérentes, ses limitations et ses premiéres applications typiques sur
des problémes en micro-ondes sont rapportés dans un article de Hoefer [Hoe85]. Il existe
aussi un livre sur la méthode TLM de Christopoulos [Chr95].

I'n 1986, Johns [Joh86] a présenté un nocud condensé symétrique (SCN) utile pour
faire des calculs TLM cn 3D. Cec nocud permet l'évaluation des 6 composantes du champ
électromagnétique en un scul point pour chaque cellule d'un grille 3D introduite sur ordina-
tcur. Sa matrice de répartition [S] qui déerit la propagation des ondes dans des matériaux
di¢lectriques et magndtiques peut étre dérivée en considérant les équations de Maxwell en
termes de conservation de charge et d'énergic [Joh87]. [.e nocud est symétrique par rapport
aux axes de la grille. Une extension de la matrice de répartition aux matériaux a pertes
a été proposcée par Naylor et Desai [Nay90]. Une comparaison du SCN aux noeuds utilisés
précedemment pour la modélisation TLM en 3D et une revue des techniques utilisées pour

41
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implanter des grilles non uniformes sont données par Saguet [Sag89).

Du a la discrétisation spatiale, la méthode TLM possede une dispersion intrinseque: la
vitesse de propagation dépend de la longueur d'onde et de la direction de propagation dans la
grille introduite sur ordinateur. En plus de la dispersion dans des schémas discrets des modes
parasites peuvent étre génerés [Tre82). Les premicrs caleuls numériques sur la dispersion
du SCN ont éLé faits par Allen et al. et ont indiqué que le SCN possede des propricetés de
dispersion meilleures que celles du nocud étendu qui a éué utilisé en modélisation TLM 3D
a Porigine [A1187].

“n 1991, Niclsen et Ilocfer ont proposé une expression analytique de la relation de
dispersion du SCN [Nie91]. Leur formule est en concordance qualitative avee les résultats
numériques de Allen et al. s impliquent que le SCN est clairement moins dispersil que le
nocud étendu. Anjourd’hui, le SCN est devenue le nocud le plus utilisé afin de faire des
simulations TLM 3D des champs électromagnétiques.

Dans la Seciion qui suit nous allons décrire le processus TLM en LD, 2D et 3D et nous
allons présenter le nocud actuel en 3D — le nocud condensé syméirique dans le cas
géneral d'un milieu diélectrique inhomogéne a pertes avec un maillage parallelépipédique.

La simulation des champs électromagnétiques au moyen de la méthode TLM se fait
comme avec les autres méthodes temporelles comparables (FD-TD. FEM-TD) dans le temps.
Une réponse en fréquence peut étre obtenue dans une bande de fréquence au dessous de la
[réquence de coupure du maillage par une transformée de Fourier.

2.2 La solution des équations de Maxwell avec la méthode
TLM en espace libre

Les équations de Maxwell en espace libre (sans charges ni courants) s’écrivent

VxH = )E (2.1)
VxE = -pdH (2.2)
VH = 0 (2.3)
VE = 0 (2.1)

Le rotationnel dc 'Eqn. 2.2 (en utilisant I'Eqn. 2.1) donne
V x V x E = —ud’E
D’autre part I'identité vectorielle
VxVxE=VV.E-V!E

est valide. En utilisant I'Eqn. 2.4, nous obtenons pour le champ E
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V?E = pitE (2.3)

De méme, la différentation de 'kEqn. 2.2 par rapport au temps et le rotationnel de
I'Fqgn. 2.1 en ntilisant 'Fqn. 2.3 donnent

2 __ 32
VH = ucy H (2.6)
Les équations 2.5 et 2.6 s'appellent équations des ondes. Leurs solutions peuvent étre con-
struites explicitement pour certains systemes de coordonnées (c¢f.[Jon86]). Nous cherchons
un algorithme qui permette de résoudre les FEqs. 2.5 et 2.6 pour des conditions initiales

quelconques. Pour cela, nous éerivons d'abord les Egs. 2.2 et 2.1 sous forme matricielle

+ed I, —ed. I, ]| [ F. ]
—el I, +ed. H F,
+ed . H, —ed, I, iy E,
-mdyE. +md;E, | ~ O | . (27
+md. . -mad, I, i,
| —md l, +mdy b, i | H. |

oue=1/c et m=1/u sont les inverses de la permeabilité et de la permittivité.

Dans la suite nous voulons montrer que, en LD, 2D et 3D, on peut résoudre les équations
d’ondes par un processus de répartition et de propagation des ondes dans une grille introduite
sur ordinateur. La méthode est connue sous le nom méthode TLM ou Transmnission Line
Matriz Method. Le processus sur grille peut étre formulé en partant de 'équation 2.7.

2.2.1 Solution de I’équation de l’onde par le processus TLM en
espace 1D

Considerons I'Eqn. 2.7 dans le sous-espace E;, I, c'est a dire £, = E, = H, = H, = 0.
L’Eqn. 2.7 devient alors dy,Au — dyu = 0, soit

—e £, | [ E. -
ay[ —m ] [ I, } - | H. J! (2.8)
Les solutions de 'Eqn. 2.8 sont des solutions de 'équation d'onde en 1D
2 [ E 2 [ E
2 ~z — 2 z
of [ i, ] = emd, [ . ] (2.9)

ol ¢ = /em cst la vitesse de propagation.

Afin de résoudre 'Eqn. 2.9 nous transformons la matrice dans 'Eqn. 2.8 ¢n un systeme
aux axes principaux. Pour cela, nous définissons les admittances et les impédances des ondes
plancs par
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Les valeurs propres de la matrice A sont données par A; = {—\/em. \/em}. Les matrices

pour la transformation sont 2 et L d'ott RL = LR =1 et diagh; = A = LAR. Les colonnes
de R sont les veeteurs propres des valeurs propres dans A. On trouve alors

1f1 Zz L1 .
L=§[l _Z} R-[Y _Y] (2.10)

I veeteur de champs u dans le systeéme aux axes principaux est donné par v = Lu ou
P 24

c

nw = [, +7ZH,
v = E,—-7H, (2.11)

Les composantes du vecteur v s’apellent les invariants de Riemann du probleme. Si
on interprete les champs électriques comme des tensions et les champs magnétiques comme
des courants, les impulsions de Ricmann correspondent aux ondes réduites (“power waves”,
Kurokawa 1965 [Kur65)).

Le processus TLM

Pour les invariants de Riemann on a donc I'équation

v +2A9,v=0 (2.12)

Les solutions sont des ondes planes. Elles se propagent le long des axes principaux avec
une vitesse égale aux valeurs propres. La forine générale de la solution est

vi(y,t) = fily = Ait)

ou f; sont des fonctions quelconques. Pour y — A;t = Const. l'invariant de Riemann
1; est constant. On appelle les lignes définies par ' : y — At = Const. les directions
caractéristiques. Une condition initiale pour v détermine f. En 1D on a

LI E.(y,0) + ZH_(y,0)

f(y) = v(y,0) = Lu(y,0) = 3| Ba(y.0) = Z1.(.0) (2.13)
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Le premier invariant de Riemann vy = 1/2(E:(y.0) + Z 1 ,(y,0)) est constant sur [_,, :
y + o = Const. (valeur propre —¢). Liinvariant de Riemann v, se propage donc dans
la direction negative de y. Liinvariant vy = 1/2(£:(y,0) — Z11,(y,0)) se propage dans la
direction positive de y le long de la ligne définie par I'y,, : y — ¢t = Const. Notons que
I'gn. 2.13 résulee direcctement de la relation entre les champs et les impulsions de Ricmann
(Eqn. 2.11).

I'équation d'onde lZgn. 2.9 peut alors ¢tre résolue par propagation des invariants de
Riemann pour des itérations temporelles infinitésimales. A la fin de chaque itération il faut
déterminer & nouveau les chumps & partir de la relation entre les invariants de Riemann et
les valeurs des champs (Fqn. 2.11) et par cela la valeur des fonctions f;. Le processus sur
la grille peut étre subdivisé en deux processus particls, un processus de propagation et un
processus de répartition:

Propagation l.cs invariants de Riemann aux valeurs propres {—c,c} se propagent d’un
nocnd an nocud voisin.

Répartition [es invariants de Riemann qui vont quitter le nocud sont calculés a partir des
invariants de Riemann incidents.

Le processus de répartition peut étre formulé de la fagon suivante: Nous calculons les

Lo ) . . . . .
nouveax -u?"l au temps 7+ 17 (apres la repartition) & partir des anciens v:“H au temps
n+ 1~ (avant la repartition) aux composantes des champs u**! sclon

,U:H-l un+l

n1'!
[ v,

Pour cela nous déterminons les 1! suivant 'Hqo. 2.11

n=-1 — Lun?l

: i

'1'

I2n outre, nous déterminons les v]'™ " suivant la méme équation

i
nt+l' _ Lu:"“

Puisque L possede un inverse unique, notamment £2, le processus devient trivial. Nous
obtenons alors

1..!'+" = LR = Sunt! (2.14)

ol § = LR = [ est la matrice de repartition. La vitesse des impulsions est égale
au module des valcurs propres /e et elle est identique a la vitesse ¢ des ondes planes
obéissant a 'Eqn. 2.9.

Lia rclation entre les champs ct les invariants de Ricmann est donnée par l'inversion de
I'Eqn. 2.11: u = Rv, soit
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Figure 2.1: Propagation d’unc onde
plane en 1D.

Rl

F.=v +v
Hy = Zuvy — Zvy (2.15)

Cette relation nous rappelle encore introduction des ondes réduites (“power waves”): Si
on interprete les champs électriques comme des tensions et les champs magndétiques comme
des courants, les invariants de Riemann correspondent aux ondes reduites introduites par
Kurokawa 1965 [Kur65]. Cela implique lunitarité de la matrice de répartition pour les
invariants de Riemann. Nous y reviendrons dans la construction de la matrice S en 2D et
3D et dans la Section 2.3.

La figure 2.1 moatre la propagation d’une onde plane avec I'impédance 7 = Hy/lJ. sur
une grille de dimension D=1: Le processus TLM consiste en une répartition des impulsions
incidentes aux nocuds, suivie de la propagation de chaque noeud a son nocud voisin pour
chaque pas d'itération dans le temps.

Pour que le processus sur grille simule bien I'équation 2.9, il faut que la distance entre
deux nocuds voisins soit suffisamment petite devant la longueur d’onde. Cela est nécessaire
pour que les fonctions f; soicnt suffisamment bien approximées pendant l'itération. Le pas
temporel At de litération cst lié au pas spatial Az par la relation ¢ = Az/At. Pour
conserver la synchronisation du processus (le temps d’arrivée et le temps de départ des
impulsions doit étre le méme dans toute la grille) il est aussi néeessaire que la distance soit
la méme entre tous les noeuds voisins.

Le processus TLM peut alors étre généralisé pour le cas olt I'espace des invariants de
Riemann devient plus grand que l'espace des composantes de champs. Cela arrive pour des

dimensions D=2,3, ou le couplage des chamnps entre les différents axes dans 'espace introduit
des dimensions supplémentaires.
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2.2.2 Solution de I’équation d’onde par le processus TLM en 2D

Considerons maintenant le sous-espace (f,. [, 1) de I'équation 2.7, c'est a dire F, =
Fy, = 11: =0. ’équation 2.7 peut étre résolue par les deux équations d; Agu + dpu = 0 et
DyAru+9u=0:

) 0 — ][ £./2] ( £./2 ]
a, 0 0 0 i, + ol M =0
—2mn 0 0 J |11, L1y,
(2.16)
) e 0 ] [ E./2 ] [ E,/2 ]
Ay 2m 0 0 I, + O Il =0
| 0 0 o || H, ] | H,
(2.17)

Les solutions aux équations 2.16 et 2.17 sont. des solutions de 1'équation d'ondes en 2D

RE, — me(@2+ 0}k, =0 (2.18)

Afin de résoudre 1'équation 2.18 nous transformons les matrices Ag et Ag en un systéme
aux axes principanx conforme aux valeurs propres communes A\; = {—v2em, V2em}. Les
impcdances 7 et les admittances Y des ondes planes sont définies comme dans le cas 1D.
Les matrices de transformation sont données par RpLg = LeRg = RpLg = LpRp =1 et
LiApRp = LpAp Ry = diag{A,}. Les colonnes des matrices 2 sont toujours les vecteurs
propres des valeurs propres A,; On trouve alors:

1 [ 715 0 % ] [ V2 0 V2 ]
L = § 0 2c 0 R = 0 -i- 0
7z 0 -%] [ 2Y 0 -2Y |
% -5 0] oy 0 2y
Lpe=-10 0 2 Re=1| =vV2 0 2 (2.19)
2z L o o L o
[ 2 V2 J L c J

Nous construisons alors les invariants de Riemann aux valeurs propres {—v2em, vV2em}
a partir des matrices Ly, L cn supprimant les dimensions d'espace z¢éro. Les espaces zéro
ont ¢té introduits afin d’obtenir les 2 équations dans le méme espace du vecteur des champs
u. La relation entre les champs et les invariants de Ricmann peut étre écrite v = Au ou
encore
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v = 0 %

wl | % 0 oz |[Ee

2= | : ! - (2.20)
v 2 O 0

3 2 V3 1,

U4 § _l\/__. 0

La partic supéricure de la matrice A correspond a la matrice Lg, la partie inféricure
correspond a la matrice L. La relation 2.20 peut étre interpretée comme une généralisation
du concept des ondes réduites en deux dimensions; Nous allons encore imposer 'unitarité
de la matrice de répartition, comme dans le cas d'une jonction sans pertes déerite par la
matrice des repartition pour des ondes réduites.

Nous résoudrons les équations 2.16 et 2.17 par un processus sur grille que nous subdivi-
s0Ds encore en un processus de propagation et un processus de répartition. Le processus de
répartition est construit de la fagon suivante: Nous déterminons les u?f“ selon

n+1" __ n4i )
viTh = Auf (2.21)
!
D’autre part. nous déterminons les vi7 " selon
na+l' _ n+1 5 ¢
vij = Aui_j (222)

L’Equation 2.21 nc peut pas étre résolue par inversion de la matrice A, car le systéme
est surdéterminé. Au lieu d'inverser 'équation nous formulons le processus de répartition
en utilisant linverse général Moore-Penrose A¥ donné par At = (ATA)~1AT !

L'introduction de I'inverse général nous permet d'éerire

ulft = ATVEL = ATAATVETD = AT (AAY + BV
= ATVEY = ATAATVETY = AV (A4 = BWETY (2.23)

avee B € espace zéro{A*}.
Nous obtenons un processus de répartition par la construction d'une matrice S pour
laqucelle on a

vt = svnrt (2.24)
vitl o= svptt (2.25)

Ici, 'équation 2.24 décrit des solutions se propageant vers les temps > 0 et 2.25 déerit
des solutions se propagecant vers les temps < 0. On déduit alors des relations 2.23 que

'L'inverse générale Moore-Penrose A% a les proprictés suivantes: e AATA = A,
e ATAAT = At o (AAT)H = AAY et o (AYA)H = AT A, ou AY designe le conjugé trans-
posé de la matrice A [Cam91].
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S=AAT+B (2.26)

Ion particulier, on a A7S = A7 ct d'apres les Eqs. 2.24, 225 S =S ou S$?2 = /. La
matrice B est determinée uniquement par la condition de symétrie sur S (STS~' = I): En
plus du fait que $? = [ cela implique que S est unitaire 2:

sTs =1

Si on considére les invariants de Riemann comme des ondes réduites (*power waves”
[Kur65], cf. Eqn. 2.15 en 1D) la demande que S soit symétrique correspond donc a la demande
de conservation de 'énergic totale.

Nous allons construire la matrice de repartition S: Nous obtenons A+ = (AT A)~' AT
sous la forme

V2 V2 VA Z
+ 2-2Z= 2+27 2+71.'3 2+lZ'-'
z ~z U 0

On impose Z = /2. On déterminc alors B € espace zéro{ At }:

I R R
T SR R
B=al - 7 (2.28)

-1 -1 1 1

De la condition que SU'S = [ nous obtenons a@a = —1/4. Nous obtenons done S =
AAT + B:
1 -1 1 1
1 -1 1 1 1
S=31 1 1 1 - (2:29)
1 -1 1

Nous allons pour la suite introduire un autre classement des invariants de Riemann: Dans
la notation initiale, la propagation des impulsions de la méthode TLM ne se faisait pas par
simple propagaiion d’un nocud au nocud voisin, mais par échange des impulsions entre les
bras de deux nocuds voisins. La relation entre la notation initiale (¥old”) et la notation des
invariantes de Riemann est donnée dans le tableau 2.1.

2Au licu de demander que S soit unitaire, il suffit donce de demander que S soit symétrique.
Cela peut étre justifié par la symétrie des équations de Maxwell vis a vis des composantes des
champs. La conservation de I'énergic (STS = I) résulte alors de la symétrie des équations de
Maxwell vis a vis des composantes des champs (STS™! = I) et de la symétric des équations
d’onde vis & vis d'une inversion de la direction du temps (S2? = I).
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notation initiale

nvariant | in ot
ug, 1 3 l Tableau 2.1: Relation entie la notation
Vi, 2 1 3 initiale de la méthode TLAM en 2D et la
v 3 4 2 notation des invariants de Riemann.
gy 1 2 4

Nous décrivons le rapport caotre la notation initiale ¢t la notation aux invariants de
Riemann par des matrices de permutation telles que

n+1- n+l-
vl = Migvog
n+it ntl’ .
Yold = Aoutv * (2.30)
ou
0010 1 0 0 0
1 0 00 0010 o
An=10 00 1] “Mouwt=|0 1 0 o (2.31)
01 0 0 00 0 1
Nous obtenons de 'Eqn. 2.24 le processus de répartition dans la notation initiale par:
n-l—l ! — n+1 .
Vold = SoldYold (2.32)

avee Sold = A()uLSAin‘
On trouve alors

(2.33)

Cette matrice est connue sous le nom de matrice de répartition pour le nocud condensé
parallele (condensed parallel node ou CPN). Elle correspond a la matrice de répartition pour
deux trongons de lignes de transmissions croisées, comme nous allons le voir plus tard dans
la Section 2.3.3.

La vitesse de propagation des impulsions est égale au module des valeurs propres |\ =
V2em; par contre la vitesse des ondes dans I'équation 2.18 est ¢ = \/emn. Les impulsions se
propagent donc /2 fois plus vite que le front d’unc onde plane.

La relation entre les champs et les invariants de Riemann est maintenant donnée dans
la notation initiale (4 une normalisation de la matrice A pres) par
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n+4" n=—1 0 .
ut = AT A v (2.34)

et, particulicrement
Y = Lt 2=
L. =k _;_ v (2.35)
la constante K étant determinée par la normalisation de la matrice A. Dans la notation

initiale on interprete les impulsions comme étant. des tensions qui s'appliquent. aux bras du
nocud. La tension totale est égale au champ L, ¢’est a dire symboliquement

I;/‘; = VO‘(I" 1 "' v()]d" 1t = vt,()l.al (2.36)

Par exemple, pour une impulsion incidente sur le bras 1 on a

"

_ o\ nl

1
[t o0 of+gs[-t 1 1 1]
= %|1 11 1] (2.37)

Viotal €t le méme pour tous les bras du noeud, ce qui justifie I'écriture de I'Eqn. 2.36.
Suivant 'liqn. 2.36, la supcrposition des impulsions incidentes est égale au champ Ez, alors
F. =#r/2x 4 =2k = 1/2. Celui-ci donne nne constante de normalisation & = 1/4. Nous
avons donc montré qu’a une normalisation prés, on peut calculer le champs £, soit par la
relation 2.36 (sclon la notation initiale). soit par la relation matricielle 2.34 (selon la méthode
de décomposition des équations de Maxwell sous forme matricielle vue plus haut).

2.2.3 Solution de I’équation d’ondes par le processus TLM en 3D

Considérons I'Fqn. 2.7 dans 'cnsemble de Pespace (K, Ey, E., H,, H,, H.;): L'équation 2.7
peut ctre résolue par

Agdu,+du; = 0
Apdzu, + 3, = 0
AgOzu; +du, = 0 (2.39)
ou
( 0O 0 0 0 0 O]
g O 0 0 0 e
(I 0 0 —-¢e O
A = 2X1 g5 9 9 0 0 O
0O 0 —m O 0 O
| 0 m 0 0O 0 O]
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0 0 0 0 0 —e]
0O 0 0 0 O O
. 0 0 0 ¢ 0O O
Ap = 2x 0O 0 m 0 0 O
0O 0 0 00 O
| —m 0 0 00 0 |
[0 0 0 0 c 0]
0 0 0 - 0O
. O 0 0 0 020
Ade = 2x O -m 0 0 0O
m 0 0 0 0O
0 0 0 0 0 0]

et avec les vecteurs des champs dans les sous-espaces définis paru, = (0, £, .0, /1, 1),
u, =(L;,0,E., 1,0, H,)ectu, =(E;,FE,0,H,, H,0).

L'équation 2.38 simule les équations 2.5 et 2.6 séparément par sirmulation des solutions
des équaltions pour des ondes de polarisation TE et TM.

Nous obtenons a partir des équations 2.38 un systéme d'équations du méme vecteur
de champ u en remplagant simplement les vecteurs ug, uy et u, par le vecteur u =
(Ec, oy, E., M-, Hy, H.). Cela nécessite pour établir la relation entre les champs et les
invariants de Riemann, de supprimer les sous-espaces de valeur propre zéro. l'ensemble des
valeurs propres des équations matricielles est {—2y/em, —2\/em,0,0.2\/em,2\/emn}. Les
matrices de transformation en systéeme d'axes principaux sont déterminées par LgAp Rg =
LpApRy = L AgRe = diag{A} et par LercRerc = Rerclere = 1. En calculant
les vecteurs propres des matrices Ag, Ag et A nous obtenons les colonnes des matrices f2.
Lies matrices L sont obtenues ensuite par inversion. On obticnt:

0 0 V2 0 0 0 ]
1 0 0 0 1 O
Ry = 0 1 0 0 0 1
: 0 0 0 V2 0 o
0 Y 0 0 0 -Y
L -Y 0 0 0 Y o0 |
0 1L 0 0 0 -=2Z17
0 01 0 Z 0O
LB:g)(\/iooooo
2 0 00 VvV2 0 O
010 0 0 Z
L 0 01 0 -z 0 |
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1 0 0 0 1 017
0O 0 V2 0 0 0
Re = 0 1 0 0 0 1
0O -y 0 0 0 VY
0O 0 0 V2 0 0
'Yy 0 0o 0 -y 0|
(1 0 0 0 O % ]
0 0 | -2 0 0
L. o= Lo v20 0 0 o0
T 0 0 0 0 V2 o0
1 0 0 0 0 -Z%
(000 1 z 0 o0 J
(1 0 0 0 0 L]
0o 1 0 0 1 0
0 0 V2 0 0 o0
Re = 0O Y 0 0 -Y 0
-Y 0 0 0 0 Y
| 0 0 0 V2 0 oj
(10 0 0 -Z 0 ]
01 0 Z 0 0
1 00 V2 o0 0 O
Le = 5%1600 0 0o o 3 (2.39)
01 0 =% 0 0
(10 0 0o Zz o |

ou les admittances Y ct les impédances Z soont définies comme dans le cas 1D.

Nous construisons encore les invariants de Riemann aux valeurs propres {—2y/em, 2\/em}
a partir des matrices L, Lg ct L en supprimant les espaces de valeurs propres zéro: Nous
obtenons ainsi comme relation cotre les invariants de Riemann v et le vecteur des champs
u:

v = /Au (2.40)

ou
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010 0 0 -Z
001 0 Z 0
010 0 0 Z
001 0 -%Z 0
100 0 0 Z
o100 -z 0o o
31100 0 o0 -z
001 Z 0 0
1 00 0 -Z 0
010 Z 0 0
010 -Z 0 0
(100 0 Zz 0 |

Nous résoudrons 'Eqn. 2.38 au méme vecteur de champs u par un processus sur grille o
chaque itération est subdivisée en un processus de répartition et un processus de propagation.
L.a matrice de répartition S est encore donnée par

S=AYA+B (2.41)

la matricc AT = (AT 4)~! &tant I'inverse géneralisé de la matrice A ot B € espace zéro{A*}
tel que ST'S =1 (¢’est a dire S unitaire). On trouve alors la matrice A7

[0 0 0 0 1 0 1 0 1 0 0 1]
1 01 0 0O 0 0 0 0 1 1 o
.ty 0o 10 1 0 1 0 1 0 0 0 O ,
A"=51 0 00 0 0 =¥ 0 Y 0 Y -y 0 (2.42)
0 Y 0 =Y 0 0 0 0 -Y 0 0 Y
| -Y 0Y 0 Y 0 -Y 0 0 0 0 0
et la matrice B est donnée par:
(-2 0 0 0 -1 0 1 0 0 1 1 o0 ]
0 -2 0 0 0 1 0 1 -1 0 0 1
0 0 -2 0 1 0 -1 0 0 1 1 ©
0 0 0 -2 0 1 0 1 1 0 0 -1
-1 0 L 0 -2 0 0O O 1 0 0 1
0 1 0 1 0 -2 0 0 0 -1 1 O
B=al | ¢ 21 0 0 0 =2 0 1 0 o0 1 (2.43)
0 1 0 1 0 0 0 -2 0 1 -1 0
0 -1 0 1 1 0 1 0 -2 0 0 0O
1 0 1 0 0 -1 0 1 0 -2 0 O
1 0 1 0 0 1 0 -1 0 0 -2 o©
0 1 0 -1 1 0 1 0 0 0 0 -2|
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notation initiale

invariaot | in out
vy, 1 3 11
vy, 2 6 10
v, 3 11 3
Ve 4 1O 6
v 5 ] 12 ‘Tableau 2.2: Relation entre la notation
vy 6 5 7 ntliale de la méthode TILM en 3D et la
v, 7 12 I nolation des invariants de Riemnann.
Ve, S 7 )
Ve, 9 2 9
(e 10 1 8
VG, 11 8 4
VGe 12 9 2
avec @ = —1/4 (S unitaire). On trouve:
[0 © 0 0 -1 0 1 0 o0 1 L 0 ]
0 0 0 0 O 1 0 1 -1 0 0 1
0 o 0 0 1 0 -1 0 O 1 l 0
0O o0 0 0 © 1 0 1 1 0o 0 -
-1 0 1 o o0 o0 o0 o0 1 0 0 1
.1 0 1 0 1 6 0 o0 0 o0 -1 1 0
=301 0 -1t 0o 0 0 0 0 1 o0 o0 I (2.44)
0 1 0 1 o o 0 o0 o 1 -1 0
0O -1 0 l ] 0 l o o0 o0 o0 o
1 0 1 o 0 -1 0 1 0 0 0 o
1 0 l 0 O 1 o -1 0 0 o0 O
| O 1 0 -1 1 0 1 0 0 0 0 |
.a rclation entre les champs et les invariants de Riemann est donnée par
uttt = ATyt (2.45)

Nous écrivons cette relation sous forme de matrices de permutation, définies par v*¥: =

Ain"gi’a‘— ct v(’)‘l’:l' "= Aoutv'H! " comme dans le cas 2D (cf. Lo Vetri et al. [Lova3]). On

trouve alors Sold = A,y S Ay ol:
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[0 1 1 0o o 0 0 0 1 0 =1 0]
;] 0 0 0 0 1 0 0 0 -1 0 1
1 0 0 1 0 0 0 1 0 0 0 -1
o 0 1 0 1 0 -1 0 0 0 1 0
o 0 0 1 0 I 0 -1 0 1 0 0
. 1l o 1 0o o 1 0 1 0 -1 0 0 0 o
Soll=3| 9 0o 0 -1 0 1 0 1 0 1 0 0 (2.46)
© 0 1 0 -1 0 1 0 0 0 1 0
1 0 0 0 0 -1 0 0 0 | 0 1
0 -1 0 0 1 0 1 0 1 0 0 0
1 0 0 1 6 0 0 1 0 0 0 1
0 1 -1 0 0 0 0 0 1 0 1 0 |

La relation entre les champs et les impulsions dans la notation initiale est donnée par

+1l _ A+ A. n+1 .
utt = AT A vy (2.47)
La vitesse des impulsions dans la grille est égale au module des valeurs propres 2/ermn.
Par contre, la vitesse de propagation pour les équations d'ondes 2.5 et 2.6 est ¢ = Jermn. Les
impulsions se propagent dans la grille deux fois plus vite que les fronts d’ondes plancs.

2.3 La méthode TLM dans des milieux inhomogeénes a
pertes

Nous avons demontré que la propagation des ondes en 1D, 2D et 3D peut étre simulée par
un processus sur grille consistant en une répartition suivie d’une propagation des impul-
sions. Les impulsions peuvent étre interprétées comme des ondes réduites (“power waves”).
Cela permet d'introduire facilement des métallisations (“murs électriques”) et des plans de
symétrie (“murs magnétiques™).

Dauns la suite, nous présentons 'introduction de ces murs électriques et des murs magnétiques
par réflexion des impulsions & mi-chemin entre deux noeuds ainsi que l'introduction des mi-
licux diélectriques par simulation de ¢, et 1, en ajoutant des dimensions a la matrice de
répartition.

Finalement, le fait de pouvoir changer la vitesse de propagation par l'intermédiairc de
¢ ¢t p, dans la grille pecrmet de synchroniser les impulsions dans un maillage de forme
de simuler avec une haute résolution spatiale (qui demande beaucoup d’espace mémoire)
sculement les régions du domaine de calcul ol la variation des champs est grande. On gagne
donc de 'espace mémoire par rapport a un maillage cubique qui traite le méme probleme.
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L/2 L/2

Figure 2.2: Schéina équivalent pour la
sunulation de U'équation de lignes.

2.3.1 Simulation de murs électriques et de murs
magnétiques

Dans le cas 1D nous avons montré que la relation entre les champs et les invariants de
Riemann correspond & la relation entre les tensions et courants et les ondes reduites. Nous
pouvons regarder la solution de I'équation 2.9 comme étant la solution de 'équation des
lignes, le champ /4. ¢tant équivalent a la tension et le champ ff; équivalent au courant. Nous
en déduisons une fagon simple de construire les murs électriques et les murs magnétiques:

mur électrique Des murs avec une conductivité infiniment grande possedent une impédance
nulle. Les impulsions seront done réfléchies pendant la propagation avec un coefficient
de réflexion —1. Afin de conserver la synchronisation des impulsions dans la grille, les
murs ¢lectriques sont placés a mi-chemin entre deux nocuds.

mur magnétique Des murs de symétrie sont obtenus par une réflexion des impulsions avec
un factcur de réflexion +1. Afin de conserver la synchronisation des impulsions dans
la grille, les murs magnétiques sont placés & mi-chemin entre deux noeuds.

2.3.2 Lignes de transmission en 1D: Introduction des “stubs”

Les “stubs”correspondant a des dimensions spatiales supplémentaires pour permettre un €,
et un gt dépendant de la direction. Pour cela, nous établissons encore l'équivalence entre
I’équation 2.9 et 1'équation de lignes, c'est a dire £, = V', I, = I, C = ¢. Le schéma
équivalent est moantré dans la figure 2.2

Le systéeme d’équations tel qu’il est simulé avee ce schéma équivalent est alors

9zV = —Ld,l
grl = -CHV (2.48)
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Figure 2.3: Schéma équivalent pour la
stmulation de l'équation de lignes avec
stub paralléle.

IEn dérivant selon x ct en substituant chaque fois I'autre équation on obtient 'équation

d'ondes en 1D (cf. Eqgn. 2.9):
[y

aflL v ] = Lo ] (2.19)
\

De la relation entre les tensions, courants ct les invariants de Riemann (cf. Eqn. 2.11)

vy = V+ZI
v, = V-2I (2.50)

on conclut que les invariants de Riemann sont identiques aux ondes réduites.

De la théoric des lignes on sait comment on peut ajouter des stubs capacitifs, c'est a
dire augmenter € = (€, et des stubs inductifs, c’est a dire augmenter g = p,pug. De méme
on peut introduire des stubs infiniment longs afin de simuler des pertes décrites par une
conductivité ¢ dans les équations de Maxwell.

Nous montrons dans la suite comment 'introduction de capacités et inductances change

la matrice de répartition pour le noeud correspondant au schéma équivalent de I'ensemble
(ligne+stub).

Le stub parallele Nous ajoutons d’abord un stub en parallele sur le trongon de ligne
montré dans la figure 2.2. Le stub augmente la capacité de la ligne de la fagon suivante:
Le stub rameéne sur la ligne une admittance
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. JAY -
Yramend = JYow VLC D) (2.51)

Avee Yy = 1/70 = JC/L ou trouve alors 'admittance normalisée

e . OF .
Yramene/ Yo = JeCy /Yo = juC -5 (2.52)
Af
(“'SL = YO(/'T (253)

I’'index =st” désigne le stub.
D’autre part, la capacité de la ligne correspond par équivalence a
o = CAF (2.54)

La capacité totale du schéma équivalent est alors

AF Y,
trio = COL+CYy = = CAN1 + 7") (2.55)

Le stub parallcle d’admittance Y simule done en 1) une permitlivité

=1+ Yo (2.56)
2
120 2D, le facteur 1/2 dans 'Fqn. 2.56 doit étre remplacé par un facteur 1/4.
Lia longueur du stub est égale 4 A€/2 afin de conserver la synchronisation des impulsions
dans la grille. Les impulsions sont réfléchies a extrémité du stub avee un facteur +1 (stub
en circuit ouvert).

La matrice de répartition

Ion regardant la figure 2.3, on trouve que les impédances vues du port | ou du port 2 sont
Zpr = 1/(1 +Yg), Zo0 = 1. On obtient alors pour la réflexion I' et pour la transmission
T =1+T (le signe “+” apparait puisqu'il s’agit d'un stub parallelle a la ligne)

r Zr — 2o _ Yt
Zr + Zo 2+ Yst
2
T = 1+1'= ——+ (2.57)
+ Yt

Les impédances vues du stub sont Z4- = 1/2, Zg = 1/Y. On obtient pour la réflexion
[ et pour la transmission T'=1+T
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L/2 L/2

¢—— W — I———

1 C/2 C/2 2

- Y
o -0
3
Figure 2.4: Schéma équivalent pour la
siinulalion de l'équation de lignes avec
stub série.
I Zr— 79 _ s 2
Zr+ 7 YSL +2
2Y,
T = 140 =_°23t (2.58)
2+ Y
Nous obtenons alors la matrice de repartition:
R S T I
S = 7TV 2 -Y 2Y4 (2.59)

2 2 —@2-vy)

Le stub série Nous ajoutons d'abord un stub série au trongon de ligne montré dans la
figure 2.2. Le stub augmente I'inductance de la ligne de la fagon suivante:
Le stub raméne sur la ligne une impédance

p ., Af )
Zramené = JZowl— (2.60)
Soit une impédance normalisée:
Ly r, . r, . Ae B .
Ztamené/ %0 = jwlst/Zo = JWLT (2.61)
?
Ly = ZoLA— (2.62)

2
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D’autre part, 'inductance de la ligne correspond par ¢quivalence a

pto = LAF (2.63)
I’'inductance totale du schéma ¢quivalent est. alors
Al Z
prpo = LAP + L7 - = LAK(1 + ?0 (2.64)
[.e stub série d'impédance Zg simule done en 1D une permeabilité
Zs
e =1+ —25£ (2.65)

[Fn 2D, le facteur 1/2 dans 'Eqn. 2.65 doit ¢tre remplacé par un facteur 1/4.
La longucur du stub est égale & AZ/2 afin de conserver la synchronisation des impulsions
dans la grille. Les impulsions sont réfléchies a 'extremité du stub avec un coefficient -1 (stub

court-circuité).

La wmatrice de répartition

En regardant la figure 2.1 on voit que les impédances vues du port 1 ou du port 2 sont

Zr =1+ Zg. Zo = 1. On obticnt pour la reflexion I' et pour la transmission 7" =1 = I'
(courant commun)

Zr — 70 _ _Zst
Zr +~Zo 2+ Zg

2
T = 1-I'= —~— 6
I T (2.66)

I«

Les impédances vues du stub sont Zyp = 2, Zp = Z. On obtient pour la réflexion I” et
pour la transmission T =1—-1T

Tr—Zo  Zg -2

r = = -
Zr + Zy Zst +
27
T o= 1-D= S 67
2+ Zgy (2.67)

Nous obtenons alors la matrice de répartition ca tenant compte du changement de signes
entre le bras 1 d'une part et les bras 2 et 3 d’autre part comme

! Zy 2 -2
S=— 2 Zy 2 (2.68)

2% 2t —2Zg 275 2- 7y
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2.3.3 Les noeuds 2D: Le noeud parallele et le noeud série

Nous déerivons dans la suite la méthode TLM classique en 2D. 5o 21D, il existe 2 possibilit és
de former un nocud & partir de lignes de transmission: [.'une méne au nocud parallele, autre
meéne au nocud série. Comme les noms l'indiquent. le nocud paralléle peul étre compléte en
ajoutant un stub parallele ot le nocud série peut étre complété en ajoutant un stub série.
Les stubs permettent comme dans le cas 11) de simuler des permittivités (stub parallele) ot
des perméabilités (stub série). Le nocud paralltle peut en plus étre complété par un stub
de conductivité infiniment long afin de simuler des pertes par conduction.

Les deux nocuds ont ¢té utilisés afin de construire un nocud constitué de 3 nocuds
paralltles ¢t 3 nocuds séries pour simuler les équations de Maxwell en espace 3D (“expanded
node” cf. Hocler (Hoe85]).

Le nocud parallele

En 2D on s’intéresse & la simulation d'équations de Maxwell soit dans le sous-espace fo; =
F, = Il. =0 (mode transversal magnetique ou TM) ou bien dans le sous-espace /1, = [, =
I5. = 0 (mode transversal éléctrique ou TE). Les équations de Maxwell donnent alors

TM: OB, =—pdiH,; O E, = poll,; 0., - 0,H, = €d. .

(2.69)
Tl W, =, ; 011, = - Ey; 0:E, -, L, = —pd. 1,
(2.70)
ce qui simule I'équation d'ondes en 2D (cl. Eqn. 2.18)
T™: (G2 +0)E. — udlE. =0 (2.71)
TE: (2 +d)H. — eudill, =0 (2.72)

Les équations pour le mode TM ou le mode TE (Eqgs. 2.69, 2.70) peuvent étre simulées
par le schéma équivalent du nocud paraliéle montré sur la figure 2.5.

En comparant ce schéma avec les relations 2.69, 2.70 on établit les équivalences suivantes
entre les tensions ct courants du nocud et les composantes des champs des modes TM et
TE pour le nocud parallele:

TM: Vi=Ey; Ib=—=H,; Iy=H,; 2C=¢; L=p
(2.73)
TE: Ve=H; I =Ey; I,=-F,; 2C=pu; L=c

(2.74)
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A2

3 Al2
LAl//

Figure 2.5: Schéma équivalent du noeud
paralléle et nocud paralléle avee stub ou-
vert.
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Les tensions sont les tensions totales (somme des impulsions entrantes et sortantes par
les bras 1 a 4).

Nous ajoutons a ce¢ noeud un stub en parallele d'admittance Y = 4(c,. = 1) (cf. la
figure 2.3). La loagucur du stub est égale & AZ/2 afin de conserver la synchronisation des
impulsions dans la grille.

La matrice de répartition peut maintenant étre obtenue faciiement  comme en 1D
en utilisant la théorie des lignes de transmission: Une impulsion arrivant au nocud par une
des 4 lignes principales (Yo = 1) voit une admittance Y3 = 3-Y. Le coeflicient de réflexion
I sera alors:

_1-0B+Ya)_ 2-Yy
Tl (34 Ya) - Ya

I\

Le cocflicient de transmission sera 1 + T = 2/(4 + Yy ).
Une impulsion venant du stub (Yp = ¥y) voit une admittance Y3 = 4. Le coeflicient de
réflexion va donc étre

Y —4

F=y.,+a

Le cocflicient de transmission sera 1+ 17 = 2V /(4 + Y )-
La matrice de répartition .S devient alors

. 1
T 1+ Yst. X
—(2+ Yy) 2 2 2 2Y4
2 —(2+Ys) 2 2 2Y,
2 2 —(2+Yy) 2 2Yt
2 2 2 —(2+Yy) 2
2 2 2 2 Yy -4

(2.75)

Des matériaux a pertes peuvent étre simulés avee le nocud parallele en introduisant un
stub en paralléle de longueur infinic ct de conductance G, telle que

G, = 0 ZoAE (2.76)

ou Zg = \/to/feo et o est la conductivité a simuler.

Les impulsions entrant dans le stub de pertes ne seront pas réfléchies. Nous trouvons la
matrice de répartition pour le noeud parallelle avec simulation d’un milicu avec permittivité
el pertes:
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. 1
T4 + Y *
-2+ Y1) 2 2 2 2Y,
2 -2+ 1) 2 2 2Y,,
2 2 -2+-Yy) 2 2Y 4
2 2 2 -(2+Y) 2Y
2 2 2 2 Yoo —1-Cg

(2.77)

ou Y1 =Y, + Gy

S

Cowmmentaires:

L.

3.

Dans le cas des milicux inhomogenes a pertes des problemes surviennent aux interfaces
entre deux milicux, puisque le cocfficient de réflexion devient complexe et déforme les
impulsions. Cela n'est pas prise en compte par la méthode TLM. On demande alors
que les pertes soient suffisament faibles pour que la partie imaginaire du coefficient de
réflexion puisse etre négligée.

La matrice de répartition se réduit dans le cas ¢, = 1 (AIR) et sans pertes a la matrice
de tépartition de Uliqn. 2.29. La vitesse de propagation des impulsions est ¢g/v/2.
Par contre la vitesse de propagation des fronts d’ondes dans un milieu diélectrique est

co/ /Erftr-

Il est possible de simuler des milicux avee une perméabilité y, avec le nocud paralléele
cn tenant compte du saut d’'impédance introduit aux interfaces ou la perméabilité p,
change (voir Saguet [Sag85]).

La relation entre les champs ct les tensions et courants est donné par Hocefer [Ito89]
comme suit:

1
2 . .
E.- = "’: = T ‘/’,an + l/slncY-L-!
4"‘Yst+(lst 'g;jl bj
-1, = I, = [vgm‘ ~ vinel sz
. .3
H, = I,= [vlm(. _ Vach /70

ou Zy = /po/eo cst I'impédance caractéristique de la grille et I'indice “inc” designe
les impulsions incidentes (c'est a dire au temps n + 17).
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Vx+AVx

"@! 3
LAV2 [ l

Vy I CAl2 ]Vy+ Avy 4

Al/2

Z

Al/2

Figure 2.6: Schémna éqivalent du nocud
s€rie et nocud série avec stub court-
ctreuilé.
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Lec nocud série

Les équations pour le mode TM ou le mode TE (Eqgs. 2.69, 2.70) peuvent également étre
simulées par le schéma équivaleat du noeud série moatré sur la figure 2.6.

2o comparant ce schéma avee les relations 2.69, 2.70 on établit les équivalences suivantes
entre les tensions et courants du nocud et les composantes des champs des modes TM et
TS pour le nocud série:

T\ =L, V=, Vo=1l,,2LL=¢C=p

(2.78)
TI: I=H. .V, =E,;Vo=-I,2L=uC=c¢

(2.79)

Nous ajoutons a ce nocud un stub série d'une impédance Zy = 4(pe, —1) (cf. 1a figure 2.6).
La longueur du stub est ¢gale & A€/2 alin de conserver la synchronisation des impulsions
dans la grille.

[.a matrice de répartition peut maintenant étre obtenue facilement en utilisant la théorie
des lignes de transmission: Une impulsion arrivant aun nocud par une des 4 lignes principales
(Zo = 1) voit une impédance Zp = 3 + Zg. Le cocfficient de réflexion I sera alors

"‘ — 2 + ZSL
14+ Zg
Cette impulsion sera transmise sur les autres bras avec un valeur 1 —T'=2/(4 + Zg ).
Une impulsion venant du stub (Zg = Z4) voit une admittance Zr = 4. Le coefficient
de réflexion va donce ¢tre

_ 1=t
T Zgy + 4

Elle scra alors transmise sur les autres bras avec un valeur 1 = T = 2Zg, /(4 + Zg).

La matrice de répartition S devient alors en tenant compte d’un changement de signes
entre les tensions sur les bras 2 ¢t 3 d’une part et les tensions sur les bras 1, 4 et 5 d'autre
part

S = _t X
4+ Zst
2+ Zy 2 2 -2 -2
2 2+ Ly =2 9 2
2 2 2+Zy 2 2 (2.80)
-2 2 2 2+ Zy 2

2724, 2Zg 2Z4, —2Zs -2y
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Cormmentaires:

1. La vitesse de propagation des impulsions est ¢g/v2. Par contre, la vitesse de propa-
gation des fronts d'ondes dans un milicu di¢lectrique est eo/ \/erytr.

2. 1l est possible de simuler des milicux avee une permittivité ¢, avee le nocud série
en tenant compte du saut d'impédance introduit aux interfaces ou la permittivité ¢,
change (voir Saguet [Sag85j).

3. La relation entre les champs et les tensions et courants est donnée par [ocfer {Ito89]
comme suit:

2 I ine . ine,
He = L= g3 (D Vol + V" [
1+ AS[‘ Lin=1 2
Ey = b’y — vg\ll(t _ V{lnc
_[_4:" = V_: — vlln(: — vsln(:

ol Zp est toujours 'impédance caractéristique des lignes et Findice “inc” désigne les
impulsions incidentes.

2.3.4 Les noeuds en 3D: Le noeud distribué, le noeud condensé
asymétrique et le noeud condensé
symétrique

Le nocud distribué

L’ensemble des ¢quations 2.7 peut étre simulé en utilisant 6 nocuds 2D, dont 3 nocuds
paralleles et 3 nocuds séries. Considérons par exemple la connexion d'un noeud parallele a
deux neuds séries montrée dans la figure 2.7

Sur le nocud parallele. la tension est commune aux deux lignes et 'équation

O.Hy — 0 H, = Q,E, (2.81)

est simulée.
Sur les nocuds séries, le courant est commun ct on a dans les plans y-z ct x-y

Ole. — 0L, = —pdli, (2.82)
OFEy — L = —pddl, (2.83)

Les trois équations 2.81 & 2.83 donnent la moitié des équations de I'Eqn. 2.7. On obtient
I'autre moiti¢ en connectant un nocud série du plan x-z & deux noecuds paralleles comme
cela est. montré dans la figure 2.8.
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Figure 2.7:  Deuz noeuds séries con-
nectés a un noeud paralléle.
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T

Figure 2.8: Deuz noeuds paralléles con-
neclés a un noeud série.
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Les équations simulées sont alors

Qley =0 ls. = —pdll, (2.84)
., —-d:. 1, = D, (2.85)
O, -, = (Ol (2.86)

Oun obticnt la totalité des deux systemes Fgs. 2.81 4 2.86 en connectant les noeuds. La
totalité¢ des 6 nocuds forme le nocud de base representé sur la figure 2.9, La distance entre
les nocuds st AZ/2.

On obticent le nocud pour un milicu inhomogene & pertes comme en 2D, en ajoutant des
stubs: Aux nocuds paralleles on ajoute des stubs ouverts avee P'admittance caractéristique
normalisée

ct des stubs semi-infinis avec 'admittance caractéristique normalisée
Go = aZA1RDY

Aux nocuds sérics on ajoute des stubs court-circuités avec I'impédance caractéristique
normalisée

Zo=A4(pr— 1)

Notons que c¢e nocud n'est pas symétrique.

Lec nocud condensé asymétrique

En 1982, P. Saguet et I5. Pic ont proposé un nocud condensé asymétrique [Sag82]. 11 est
obtenu a partir du noeud distribué en supprimant les trongons de lignes d’interconnexion.
Il est montré dans la figure 2.10.

[.e noeud ponctuel asymétrique possede 18 bras: 12 bras d'interconnexion et 6 bras pour
les stubs. Les stubs de conductance n'interviennent ici que dans le calcul des coefficients
de la matrice car ils sont semi-infinis. Il existe un schéma équivalent pour ce noeud montré
dans la figure 2.11.

La matrice de répartition cst une matrice de 18 x 18. Elle peut étre derivée du schéma
équivalent. La matrice et le calcul ne seront pas présentés ici. La matrice et le calcul detaillé
se trouvent dans {Sag85]. Les élements de la matrice ne dépendent que du maillage et ne
sont calculés quiune fois au début du processus iteratif. La matrice de répartition permet
alors a chaque itération de calculer les impulsions sortant du noeud ponctuel en fonction
des impulsions incidentes sur tout les bras. Comme le noeud distribué, le noeud ponctuel
asymétrique reste asymétrique.
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Figure 2.9: Noeud distribué en trois di-
mensions.
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Figure  2.10:
asymélrique.

Noeud  ponciuel
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Figure 2.11: Schéma équivalent du
noeud ponctuel asymélrique.
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Le nocud condensé symétrique

Dans le cas 3D on ajoute an nocud condensé symétrique déerit par sa matrice Eqn. 2.44
(notation avee les invariants de Riemann) et Fgn. 2.46 (notation classique) des stubs par-
alleles de longucur A?2/2 (stubs d’admittance ou stubs de permittivitd), des stubs paralléles
de Tonguenr infini (stubs de conductance on stubs de pertes) et des stubs série de longueur
A4/2 (stubs d'impédance ou stubs de perméabilité). La matrice oblenue est une matrice de
dimension 18 X 18 (12 dimensions pour les lignes de connexion, 3 dimensions pour les valeurs
de ¢, ¢t 3 dimensions pour les valeurs de g, suivant les 3 axes). Elle a ¢té donnée par Johns
1987 [Joh87| pour le cas d'un milieu di¢lectrique sans pertes. La matrice a été génédralisée
pour des milicux avee pertes ohmiques par Naylor et Desay {Nay90]. Cela n’augmente pas la
dimeaosion de la matrice, car les impulsions réparties dans les stubs de pertes ne reviennent
plus. La figure 2.12 montre le noeud condensé symétrique avec la notation des impulsions
le long des Lrois axes spatiaux.

Des 1981, Al-Mukhtar et Sitch ont discuté la technique de synchronisation des impulsions
dans une grille parallelépipédique en 3D au moyen d'une variation des valeurs pour ¢, et
pr. Cette technique peut facilement étre utilisée dans la matrice du nocud 3D condensé
symétrique en permettant des mailles de dimension u x v X w selon les axes z, y et z. Les
élements de la matrice du nocud dépendent alors aussi biecn de leur position que de l'axe
déerit par la ligne (ou colonne) de la matrice.

Les élements de la matrice sont alors

B cry .z
CT T CHY ) T AZ
b=c¢ = ’
T T G EY +9)
B G+Yy  z
C T TGy ) AZ+a)
1 G-V +4
= = -——h,:————
d=1 = a5 2) Cry+4
1-Z
] = — =Zd g=Yh .87
J 17 g9 (2.87)

Ces éléments sont indicés sclon leur position dans la matrice. Ils sont relevés dans les
deux tablecaux 2.3, 2.4 qui suivent (dans la notation initiale)
Par exemple, I'élément Saq cst ¢gal a

 GatY. Z,
2AC, + Y. +4)  2(Z, + 4)

Sag = Cry =

Pour un bloc de dimension 1 X v x w dans les directions z, y et z les impédances et
admittances normalisées sont (d’apres Al-Mukhtar et Sitch):
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colonne

Y-stub, G-stub

Z-stub
l X
2
3

=N

[91]

Rofie JREN <2
K K@ N K< NN N« K

._
N

£
«

—
an
N

16

~1
~!

1 2 3 4 5 6 T 8 9

X X y y =z =z z y X

2 'y 72 X X y x X ¥y
7 a b d 0 0 0 0 0 b
y b a 0 0 0 d 0 0 ¢
7 d 0 a b 0 0 0 b O
X 0 0 b a d 0 -d ¢ ©0
X 0 0 0 d a b ¢ -d 0
y 0 4 0 0 b a b 0 -
X 0O 0 0 -d ¢ b a d 0
X 0 0 b ¢ -d 0 d a O
y b ¢ 0 0 O -d O 0 a
y 0O d 0 0 b ¢ b 0 d
z 4 0 ¢ b 0 0O 0 b O
7 c b -d 0 0 0 0 0 b

¢ ¢ 0 0 0O 0 0 e c

0 0 e e 0O 0O O 0 o

0 0 0 0 e ¢ e 0 o
> 0O 0 ©O f - O f -f 0
y o - 0 0 o f 0 O f
b7 f o -f 0 O O 0O 0 o

Tableau 2.3: Matrice de répartition
pour le nocud condensé symétrique
dans un milicu diélectrique inhomogéne
avee pertes: premicere partic.
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Tableau 2.4: Matrice de répartition
pour le nocud condensé symétrique
dans un milicu diélectrique inhomogene
avec pertes: deuxiéme partie.

10 11 12 13 14 15 16 17 18
2y x X ¥ 2
y 2z 4 X y =z
0O -d ¢ g 0 0 0 O i
-4 0 b g 0 0 0 i O
0 ¢ d 0 g 0 0 0 -
0 b 0 0 g O i 0 O
b 0 0 0 O g -«i 0 O
¢ 0O 0 0 O g O i 0
b 0 0 0 0 g i 0 O
0 » 0 0 g 0 -1 O O
d 0 b g 0 0 O i 0
a 0 0O 0 0 g 0 -1 O
0 a d 0 ¢ 0 0 O i
0 4 a g 0 0 0 0 -
0 0 e h 0 O O O O
0O ¢ 0O O kK 0 O 0 O
c 0 O O O h O 0 O
0 o 0 0 0 O j 0 0
-f 0 0 0 0 0 0 j 0
0 f £ 0 0 0 0 0 j
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rw ¢ . fuw we ¢ .
Y—[ Ty y, =9 2Y [ T _ 9
T TRROAY) iy Le cAl w cAl J

i

2, =0 W B 2]' =2'E"'_z /._-"‘”"’—2]

v Al J Lw eAL
(2.88)

Toutes les lignes de connexion ont I'impédance caractéristique de 'espace libre.

Le pas de temps At doit éure choisi tel que les impédances et admittances ne deviennent
pas négalives.

Comme cela est noté par Al-Mukhtar et Sitch, le principal désavantage de la technique de
synchronisation des impulsions par unc variation des valeurs effectives pour ¢, et p, consiste
danps le fait que le pas dans le temps Al peut devenir tres petit, en particulier si les valeurs
pour u, v ct w sont tres diflérentes. Dans ce cas le nombre d'itérations pour simuler un
temps total donné -— par excmple afin d’obtenir une certaine résolution en fréquence ou
afin qu'un signal puisse se propager le long d’une ligne d’une certaine longucur - doit étre
augmenté de fagon correspondante.

La relation entre les impulsions de Riemann et les champs a éué donnée par Johns [Joh87]:

E, = 2[vine s vinepvinepvine o yovine] 4y
[, = iL' inc vln(. + Vmc + V‘lln(' R Vlnc] [viA+Y,]
£, = !(V'.m i Vsinc + VTinc + V:icl)lc + szxi;m] [wd+Y.]
H, = 2 (V,' nc Vsinc + V_finc _ Vﬁinc _ vlibpc] JZou|d + Z5)
i, = 2l-vjsepyine . yine_yine _vinezo (4 4 7,
. = 2 {Vlinc - vﬂiuc + Vli{lc - V:i'?c - V'.isnc] [Zow (4 + Z.]

(2.89)

La vitesse des impulsions dans la grille cg est égale au module des valeurs propres 2/em.
Par contre, les ondes planes ont une vitesse de propagation (/em. Les impulsions se propa-
gent done 2 fois plus vite qu'une front d'une onde plane. Autrement dit, la vitesse d'une
onde plane en espace libre dans la grille est ¢o/2.

L.a matrice de répartition donnée plus haut — ainsi que les murs électriques et magnétiques
discutés plus haut — permettent de simuler des éléments de guides en haute fréquence tel
que des résonateurs ou guides rectangulaires remplis en partie avee des diélectiques a pertes
(p- ex. détermination des fréquences de coupure des cavités et des guides), des lignes micro-
rubans avee des discontinuités quelconques (p. ex. caractérisation des lignes et des discon-
tinuités des lignes par des paramétres S;;) aussi bien que la propagation et la diffraction
d’'impulsions électrormagnétiques.
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Comme les caleuls en 31 demandent beaucoup d'espace mémoire (p. ex. un calcul avee
100 x 100 x 100 nocuds demande 10°% x 18 x 4octets = 72 Mega octets). pour certains de ces
caleuls il est néeessaire d’appliquer des conditions d'espace ouvert aux limites du domaine de
calcul. Les conditions d’espace ouvert permettent aux ondes de sortir librement du domaine
de calcul. Cela permet. de tronquer le domaine de calcul aux endroits ot les impulsions e
propagent comme dans 'espace libre, et de minimaliser le domaine de caleul de fagon qu'il
ne conticnne que les structures (p. ex. une discontinuité micro-ruban) considérées. Nous
parlerons de ces conditions dans le Chapitre 3.



Chapitre 3

La méthode TLM en espace
ouvert: Les conditions aux
Iimites absorbantes

3.1 Introduction

Afin de simuler la propagation des champs dans des problémes d’espace ouvert (p. ex. afin
de determiner un diagramme de rayonnement) la distribution des champs pour des temps
longs ne peut pas ¢tre supposdce limitée dans U'espace. D'autre part, chaque grille introduite
sur ordinateur est mitée par 'espace mémoire donné. Dans les caleuls, la grille doit étre
tronqudée ct les impulsions venant de la partie extéricure de la grille ne sont pas connues. Afin
d’assurer que les ondes eréées a I'intérieur du domaine de calcul peuvent sortir librement
de la grille, des conditions absorbantes aux limites doivent étre introduites. Ces conditions
absorbantes aux limites peuvent ¢tre introduites sous forme de schémas d’eztrapolation dans
lesquels les impulsions entrant aux nocuds limites sont estimées par les valeurs des impulsions
qui s¢ propagent dans les nocuds internes.

Toutes les conditions absorbantes aux limites ne sont pas des schémas d’extrapolation.
Jusqu'a maintenant, la “charge adaptée” (matched-termination) de la grille est largement
utilisée: Cette méthode consiste a appliquer une impédance de l'espace extéricur égale a
Pimpédance de la grille. Si la grille est placée dans V'espace libre, Padaptation consiste
a annuler toutes les impulsions incidentes vers la grille. Les charges adaptées absorbent
parfaitement uniquement les oondes partant de la grille avee une direction de propagation
perpendiculaire & la frontiere. Pour des angles d'incidence différents de 0° des réflexions
résiduelles demeurent, dues & une absorption insatisfaisante des ondes.

Quelques conditions d’extrapolation simples ont été proposées p. ex. par Higdon [Hig86'.
Une approche plus générale de construction des schémas d’extrapolation est fondée sur des
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discrétisations des approximations de I'équation d’onde unidirectionelle. L'é¢quation d'onde
upidircctionelle y est définic comme limite d'un systeme d'équations a dérivées particlles:
Elle déerit le flux d’ondes d'un demi-espace a un autre et dans une direction sculement.

D’autres techniques d'extrapolation en 21 [Sin92;. extrapolation du deuxicme ordre des
équations unidircctionnelles en 2D et 3D Mor92], d'ordres plus élevés d'approximation de
I'équation unidirectionnelle d'aprés Iigdon et Keys et d'ordres plus elevés de expansion
de Taylor ont éLé envisagées et sont rapportées dans la littérature: Chen et al. {Che93]
parlent d’unc bonne absorption des ondes en utilisant la condition de Higdon-Keys [Che93].
Ils oot trouvé qu'un ordre dapproximation supérieure a 3 n'améliore pas la précision de
la solution. IIs expliquent cela par le fait que Ja méthode TLM est limitée au 3ieme ordre
environ dans les opérations a différences finies et pour cela est insensible aux dérivées d’ordres
élevés demandées par la condition de Higdon-Keys. Pourtant nous allons voir dans la suite
qu'en 2D) la qualité d'absorption s'amdéliore avee I'augmentation de 'ordre jusqu'a l'ordre
5. Dans leur article ils présentent un schéma aux limites basé sur la discrétisation “box-
scheme” de la formule de Higdon-Keys qui est numériquement fortement divergent. Dans un
article ultéricur, Eswarappa ct al. (Esw94} ont presenté un schéma de discrétisation qui est
plus stable. lls sont néanmoins limités dans la précision: Leurs résultats pour le troisieme
ordre d'approximation ne sont que légerement supéricurs a ceux obtenus avec un schéma du
deuxi¢me ordre.

Comme dans la suite de nos calculs, nous utilisons en géncral le SCN (saufl si indigqué
autrement), les dérivées dans le temps doivent toujours étre prises sur deux pas de temps;
C’est. le temps pour une impulsion venant d'un bras d'un nocud arrive au méme bras dans la
couche voisine de nocuds. Cette caractéristique de propagation est due au caractere d'ondes
lentes du SCN.

3.2 Conditions absorbantes aux limites

Dans ce qui suit, nous allons d’abord présenter des schémas d’extrapolation de premicer
ct deuxieme ordre. lls peuvent étre utilisés directement pour cstimer les impulsions qui
pénétrent dans une grille limitée en espace. Dans la suite, nous discutons unc approche
tres générale pour déerire des ondes partant d'un domaine de calcul, basée sur 1'équation
d’onde unidirectionnelle. L'équation d’onde unidirectionnelle peut étre définic comme limite
d'une hiérarchic d'équations & dérivées partielles, obtenues par approximation de la relation
de dispersion pour 1'équation d'onde unidirectionnelle dans l'espace de Fourier. [.’équation
unidirectionnelle décrit le flux d’énergic d'un demi-espace a 'autre.

Nous dériverons une hiérarchie des approximations de I'équation unidirectionnelle sous
forme d'une hiérarchie d'équations a dérivées partielles. Nous présenterons 7 familles pour
cette hiérarchie correspondant aux 7 méthodes d'approximation. Nous discuterons finale-
ment plusicurs formulations alternatives de la hiérarchie des équations a dérivées par-
ticlles et nous discuterons le cocefficient de réflexion théorique pour les deux premicers ordres
d’approximation.

Afin d’obtenir des schémas d’extrapolation & partir de la hiérarchie d’équation unidiree-
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tionnelle, les équations & dérivées particlles doivent étre discrétisées. Cela va étre fail dans
la Section qui suit. Nous y discutons aussi les résultats obtenus, en testant ces schémas

numdériquement.

3.2.1 Extrapolation en espace temps

[’extrapolation en espace-temps a ¢été discutée par exemple par Higdon [Hig86). Le principe
est moatré sur la Fig. 3.1: les impulsions partant de la grille sont supposées avoir la forme
d’ondes planes se propageant dans une direction perpendiculaire aux limites. Le diagramme
correspond dans 'espace (voir axe espace) a deux représentations de la fonction d'onde pour
des temps différents 4,1 et Loy . Dans le temps (voir axe temps), le diagramme correspond
a deux représentations de la fonction d’onde aux positions xqg et ry.

Regardons le diagramme dans P'espace: La prédiction de la fonction d'onde discrete aux
limites en g est faite en utilisant les valeurs en x; et £2 aux temps ¢, respectivement £,_3
(Rappellons que n = 2 est le temps pour qu'une impulsion avance d’un bras d'un nocud au
meme bras du nocud suivant).

[.’extrapolation cn espace-temps du premicer et du deuxieme ordre se fait en annulant les

dérivées correspondantes. Au premier ordre:

n-1 n—1 __ .
o — M =0 (3.1)
lei et dans ce qui suit nous notons u"-f,k = u(iAz,jAy,kAz; nAt) la fonction d’onde
discréte sur la grille.
Au deuxieme ordre:
“n?l _ 2un—1 o un—3 =0 (3 2)
Ok Lk T Uoi = -

L’extrapolation espace-temps n'absorbe completement que les ondes ayant une direction
d’incidence perpendiculaire aux limites. Le premier ordre d'extrapolation espace-temps est
équivalent au premicre ordre d'approximation de I’'équation unidirectionelle en utilisant des
coeflicients de Padé (voir ci-dessous), discretisés par des opérateurs a différences finies du
premier ordre. Higdon [Hig86] donne une formule géneralisée pour des extrapolations espace-
temps d'ordre quelconque. Il a montré que 'extrapolation espace-temps d’ordre supérieur a
2 cst instable.

3.2.2 L’équation unidirectionnelle et le probleme
d’approximation

Les solutions de I'équation d'onde en 2D
2, . 92 Lo .
O;u+dyu— C—,_,-()t u=20 (3.3)

sont donndées par
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Figure 3.1: Eztrapolation des ondes
planes dans Uespace et dans le temps.
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u(z, t) = upexp j(wf — kx) (3.4)

ou k = (kz. k) désigne le vecteur d'onde. x = (1. y) désigne la variable spatiale, ¢ désigne
la variable temporelle et ¢ désigne la vitesse de phase de T'onde. Linsertion de 'Eqn. 3.4
dans 'l“qn. 3.3 donnce la relation de dispersion pour des ondes plances

w? = A2+ k2) (3.5)

Puisque T'onde w(x. {)est une solution fondamentale de I'équation d'onde (ciest a dire
que toutes les solutions possibles peuvent étre obtenues par superposition de U'Eqn. 3.3),

relation de dispersion caractérise 'équation d'onde uniquement. En plus, puisque w et k

sont des variables duales de ¢t et x, nous pouvons dire que la relation de dispersion représente

I'équation d'onde dans P'espace de Fourier. De I'Eqn. 3.5 nous obtenons alors une équation

d’onde decrivant un flux d'ondes planes d'un demi-espace {z;z < 0} dans le demi-espace
{z; £ > 0} si nous n’admettons que des ondes pour lesquelles &, > 0. Nous écrivons alors

ky = —=v1—s2 (3.6)
c
ou s est donné par
[ .
s =—k,=sn0
w

Nous appelons 1'Eqa. 3.6 la relation de dispersion de I'équation unidirectionnelle. Afin
d’oblenir une équation a dérivées particlles correspondante, nous devons approcher la racine
dans cette équation par une (onction rationnelle 7(s):

- r(s L)
Vim# =) =5 @ &0

lei Pn =Y opis' et Qn = Y7 q.8* sont des polynémes de degré m. ct n dans le sinus
de 'angle incident s.

En insérant 'lign. 3.7 dans la relation de dispersion pour V'équation unidirectionnelle
[Eqn. 3.6 on aboutit & unc rclation de dispersion pour une équation unidirectionnelle, ap-
prochée par

Zn:q. (k—c) k C—wip. (k c) (3.8)

=0 =0

En ¢liminant le dénominateur, nous pouvons écrire:

Zq. (k)" (k) () ZP: ¢ (k)" (u) ! (3.9)

i=0 1=0

ou j = v/—1. Ici nous avons introduit K = max {n,m — 1}.
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Pour les ondes de la forme de 'Fqn. 3.4, nous obtenons une hi¢rarchie d'équations a
dérivées partielles avee une précision Jd'approximation croissante par les substitutions o =
Jw, Oz = jk; and 9, = jk,. Pour m =n et m=n+2 ccla donne

(0,0) o — %(’){u =0 (3.10)
(2.0)  D,den — ‘%z),a, 1= paid,dyu =0

(2.2) qod-0%u + cgq-_:(?,i)fu - p—fc’)?u - (,77-_;(')¢(')3u =0

Nous appellons (m, n) l'ordre de I'approximation. Dans ce qui suit, nous appellerons
I'EEqn. 3.10 fornulation hiérarchique symétrique du probleme d’approximation de I'équation
d’onde unidirectionnelle. La restriction & m = n. m = n+ 2 donne des ¢quations a dérivées
particlles bien posées (Trefethen [Tre86)). Cette restriction admet toujours des approxima-
tions d'ordre arbitrairement ¢levé a I’équation d'onde unidirectionnelle. Les coefficients p,
et g, des polynomes P et @ doivent étre déterminés en approchant. la racine dans la relation
de dispersion de I'onde unidirectionnelle (voir Fig. 3.2). Parce que la relation de dispersion
est symétrique en s, nous exigeons la symétrie de 7(s) telle que p; = q; = 0 pour tous /, j
impair. [lalpern et Trefethen [Hal88! ont proposé différentes méthodes pour approcher la
racine, chacune menant a unc famille d*approximation de I'équation d’'onde unidirectionnelle.
Les 7 familles proposées par Halpern et Trefethen sont les suivantes:

1. Approximation de Padé Soit V1 — s2 écrit sous forme d’une série de ‘laylor autour
des=0 |
= _ 2 o — fn).n
f) = V1=t = ) — s
n

L'ordre (m.n) de 'approximation de Padé r(s) & v/1 — 52 est l'unique fonction ra-
tionnelle de sorte que 'expansion de Taylor est conforme a la série de Taylor de V1 — 52
jusqu’a l'ordre m+n + 2:

r(s) = V1 =52 = Q|sm+nr?)

Avee 'approximation de Padé les points d'interpolation sont tous égaux 4 s = sin © =
0. Notons que pour la hiérarchie (m, n) = (0,0), (0,2), (2,2), (4,2) ... Vapproximation
de Padé est équivalente a la troncature du développement en fraction continue

2 2

mgl— 8 S 3 3

92— 99 o 7

2 2

2. Interpolation aux Points de Chebyshev L'interpolation aux points de Chebyshev
se fait sur une infinité de points dans lintervalle (-1, 1]. Les points de Chebyshev sont
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definis par la condition des espacements égaux des angles d'absorption totale ©:

Sk = sinOy,
O = —m/2+([r(k-0.5) /2K 1<k<2K
lei K= (m + n + 2)/2 est le nombre d’angles d’absorption totale. La fonction ra-

tionnelle r(s) peut étre copstruite en utilisant. une procédure selon Newton (1964)
(comp. [Hal8s;):
Soit 2 un polynome de degré R égal a zéro pour /1 — sz pour tout k. Soit

r(s) = PO+ (=)
N SHORERLEDINT

avee L = /1 — s2. Alors r(s) = V1 — 52 est équivalent a P(L) + P(=t) = —P(t) + P(t)
ou encore P(1) = 0. Le polynome r(s) interpole /1 — 52 aux points +sy.

(3.11)

3. Moindres Carrés ou L2 [’approximation par les moindres carrés d'ordre (m,n) de la
relation de dispersion pour 'équation d'onde unidirectionnelle est donnée par

e i ()
"\/ L-s (3)'|2 (;r.].q.} {Qn(")

ou |[fll2 = ‘/f_i,. f(8) ds est la norme des moindres carrés. Le probleme de minimali-
sation peut étre résolu en utilisant s, ...5x comme variables indépendantes qui sont a
ajuster. La procédure de Newton décerite plus haut peut étre utilisée pour construire
le polynome interpolant. IHalpern et al. ont déterminé les s de cette fagon.

4. Chebyshev ou 1, Afin d’obtenir approximation de ty pe Chebyshev nous remplacons
la norme des moindre carrés || |2 par la norme L°°:

S = max | S (s);

w€(—1,

A pouvcau. les coeflicients p;, q, pcuvent étre évalués par optimisation cyclique des si
au moyen de la procédure de Newton (Eqn. 3.11).

5. Chebyshev sur un sousintervalle ou L Avec cette approximation, la norme [°°
est tonjours utilisée. En plus, Uintervalle d’optimisation correspondant a © € [—-a, a
est limité comme suit



88 Fspace ouvert,

(m.n) a

{0.0) 10°
(2.0) 20°
(2.2) 45°
(4.2) 60°
(4.4) 75°

Lies coellicients p;, g, sont trouvés de la méme fagon que dans le cas de l'approximation
de type Chebyshev.

6. Intcrpolation aux Points de Newwman Newman a choisi les points d’interpolation de
la fagon suivante

Sy = 1

sk = V1-&-2 2<k<K
m(p{—l/\/l\'— l}

ou 13

Pour ce choix de points d'interpolation, Newman a pu moatrer que des approximations
d'ordre (n,1) ont une errcur L>° de Fordre de O(exp —ry/n). K = (m+ n + 2)/2 est
toujours le nombre d'angles d’absorption totale et les coeflicients p,, g, peuvent étre
évalués par optimisation cyclique au moyen de la procédure de Newton (Eqn. 3.11).

7. Approximation de Chebyshev-Padé Soit /1 — 52 écrit sous forme de série de Cheby-

shev

2 4/1 1 1
—2==__{Z2T(r — ) - — ) JE T
V-5 ~ - (37‘2(;) + 157~4(1)T 357’,3(3-) + )

ou Ty est le k iéme polynome de Chebyshev de premiére espice. Lordre (m,n) de
'approximation de Chebyshev-Padé r(s) de v/1 — s2 est la fonction rationnelle unique
telle que que son expansion Chebyshev soit conforme a la sériec de Chebyshev de
V1 — 52 jusqu’a l'ordre m. + n + 2:

m(s) = V1 =52 = O[Tnrns2(s)]
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3.2.3 Une formulation due a Lindmann

La hiérarchie des Eqgs. 3.10 peut étre exprimée de maniere différente. Nous éerivons I'approximation
de la fonction rationnclle & V1 — 52 sous la forme de Lindmann {Ren92]

m=1

l-s'—po|-1+z O (3.12)

Fn substituant I'Eqn. 3.12 dans la relation de dispersion de 'Eqn. 3.5 ¢t en multipliant
par la fonction d’onde u on obtient

ks ‘Zf LA (3.13)
7 u——]mu—— w———u
=7 1-Dns

Nous écrivons alors le membre droit de I'Eqo. 3.13 comme une somme de fonctions de
Lindmann v,, définies par
s’

T3 3,3 u (3.14)

Vpp = Jw
Completé par les substitutions jk, = 9.. jw = J; au membre gauche de 1'llgn. 3.13
on obticnt une hiérarchie d'équations a dérivées partielles qui approchent I'équation d’onde
unidirectionnelle.
Les cocflicients a;, B; dans I'Egn. 3.19 peuvent étre obtenus a partir des cocflicients p;,
qi dans I'lEqn. 3.7 pour une famille d'approximation donnée d'ordre (n,n) avee m = n ou
m = n + 2 en égalant les deux approximations rationnelles

2n(s M nm
a5 2

m=1

et en comparant les cocefficients de méme puissance de s. Les cocflicients jusqu’a 'ordre
(4,4) ont éLé obtenus de cette maniere.

Afin de résoudre n'importe laquelle des équations & dérivées partielles, nous devons
déterminer les fonctions de Lindmann définies par I'Eqn. 3.14. Pour ccla nous devrons
évalucr la fréquence angulaire w et la composante du vecteur d’onde k,,. Cela est équivalent
a évaluer les dérivées partielles dans la direction parallele a la frontitre et dans le temps.

Il est possible d’exprimer 'Eqn. 3.14 sous forme d'unc équation & dérivées particlles cn
utilisant

NUm + N0 = jwysn (3.16)

Iln multipliant I'Eqn. 3.16 par (l - [3,,,.93) ct en insérant la définition des fonctions de
Lindmann (Eqn. 3.14) on obtient les cocfficients v, = —w?, v, = ﬁn,czkg and v3 = —C!..-.Czkz-
Nous pouvons donc écrire 'Eqn. 3.16 comme suit:
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(jw)2 Uy = iIn€? (jk,,)z Um = Py, (jw) (jky)z " (3.17)

Avee les substitutions 9, = jw, 0, = jky, d, = jk,. nous obtenons a partir de I'Eqo. 3.13
I'équation d'onde unidirectionnelle sous forme de Lindmann comme ci-dessous

M
, Po . Po .
det —— u=— E Uyn (3.18)
¢ ¢
m=1
ot les fonctions de Lindmann peuvent ¢tre déterminées par lign. 3.17:

v, — ,13,,,(:2(')31',,, = cza,,.i),(')zu (3.19)

pour m=1...AJ.

Nous appelons les Eqgs 3.18, 3.19 formmulation de Lindmann du probleme d’approximation
de I'équation d'onde unidirectionnelle. Les fonctions de Lindmann sont determindes le long
des fronticres par unc infinité d’¢quations a dérivées particlles du deuxiéme ordre; Elles
peuvent étre interprétées comme des fonctions de correction a conditions limites d'ordre
(0.0) dans les Eqgs. 3.10.

3.2.4 Une formulation due a Higdon et Keys

Une troisieme possibilité permettant d'éerire une hiérarchie de I'équation d’onde unidirec-
tionnelle est. donnée par la condition absorbante aux limites trouvée indépendemment par
Higdon {Hig86] ct Keys [Key85]

['n-i-l
| (900 —cdr)|u=0 (3.20)
L1=1

oug; =cusO;: i =1...n+ 1 sont des poids dépendant des angles d’absorption totale.
Afin de voir que pour ces angles 'onde est completement absorbée nous appliquons un des
factenrs dans le produit de U'Fqn. 3.20 4 une onde plane u = uwpexp{j(krx + k,¥y) + jwt}
s¢ propageant avee la vitesse de phase ¢, incidente a la frontiere sous 'angle © avec k; =
|k| cos ©. Nous obtenons

(.00 — cOz)u = cosO(jw)u — cjhk,u = 0
— cosOw —clklicos® = 0

ce qui est la définition de la vitesse de phase ¢ = w/ [ki. Nous concluons que pour une
telle onde plane la condition aux limites de I'Eqn. 3.20 est satisfaite; L'onde ne va pas étre
réfléchie & la frontiere. Nous appelons UEqn. 3.20 forinulation de Higdon-Keys du probleme
d’approximation de 1'équation d'onde unidirectionnelle. lIci nous apellons 7 + 1 'ordre de
I'approximation.
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Nous pouvons exprimer la condition aux limites de Higdon-Keys dans la forme hiérarchique.
Considérons d'abord la relation de dispersion approchée générale de I'lign. 3.9. Nous de-
mandons la symétric r(s) = r(—s) ¢t nous remplacons kﬁ par w?/¢? — k2 (en utilisant la
relation de dispersion pour des ondes planes). Il en résulte pour i = n =2 que

. ; l+q . . - P2,
qocai},’ - 1202(-);2(-)[ - lzr:()_,,(),z + u()? =0
’ q2 4 q2 /P

D'autre part, la formulation Higdon-Keys (Fqn. 3.20) devient pour n +1 =3

P (')f: — (g1 + &2 +g3)(:2 (')3('),
+(g192 + 9193 + 9203)¢ L0 — g1gags &} =0

La comparaison des cocfficienis donne un systéme non linéaire d'équations avee les coef-
ficients pour les deux formulations donnés par les relations

P2
N +g2tgy = —
/7]
l-q

g192 T G193 + G293 = —

q2

qG19293 = _M (3'2[)
q2

Il est simple de vérifier que les Egs. 3.21 sont satisfaites pour des conditions de Padé
(o =1.0, p2 = -0.75, g0 = 1.0, g2 = —0.25. g, = 1.0. g2 = 1.0, g3 = 1.0).

Pour le cas général nous demandons encore la symétrie 7(s) = r(—s). Bn utilisant la rela-
tion de dispersion (Iqn. 3.5) nous obtenons I'lqn. 3.9 en toute généralité (nous permettons
aux coefficients q; d’¢tre nuls):

n/2 _ \ Jj
z Ml (;(’)f - c')f) (q2jc0r — p2j@) | u=0

Jj=0

ce que nous ¢erivons:

n/2 j

PIPBCH ( ’ ) ¢ (e oDt gy g =@ =0 (322)
j=0 i=0
avee ‘: =Wfi—$

D’autre part, on a
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[Tt = 6) =D (=1 > a0, vir; - 0, ricny (3.23)
k=0

Jj=! Oy k

ou g, (1)...0i_x(i = k) sont i — k valceurs différentes de Pensemble {1,2...:i}.Par ex-
emple, i =3, i—k =2 doone {02(1),02(2)} = {1.2}.{1,3},{2,3}. Sitous les a; sont égaux,
il en découle la formule binomiale. Pour cela, avee a; = 99, et b = d.¢ nous pouvons écerire
I'Eqn. 3.20:

n+1
DS DT ot n() X et K G ainbr—ky g T RO =0 (3.24)
k=0

On+l-&

ou, en introduisant 7 = 0...n/2, n pair nous pouvons écrire:

n/2
Y. D Goueron( Koo X oy iy p T O
=0 Tnrl-2t
n/2

- Z B+l Z Gon 2 (1) X oo+ X Go aumeniy §p O T TEFNgREL,, g
1=0 Fn- i

(3.25)

Si nous comparons les sommations des ligs. 3.22 et 3.25 nous réalisons qu’elles sont de
la méme forme. Si nous comparons les coeflicicnts a la méme puissance 2i (paire) nous
trouvons

i
Z gﬂ..-.l_-_!.(l) K.o.. X .(10“5,1-2.("+1—2!) = Z(—1)1+: ( ; )p'ZI (3'26)
j=0

Tnil-2

ct a la méme puissance 2 + 1 (impaire) nous trouvons

> Gon att)y X oo X Gan 20 = 9 _(—1)7F! ( ; )Q'Zi (3.27)
Jj=0

Tn--2a

Il est simple de vérifier que les relations 3.26, 3.27 se réduisent pour n = n = 2 aux

Eqs. 3.21.

Commecentaires:
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1. 8i pnous demandons que la relation de dispersion soit approchée exactement & n ++ 1
angles ©; avee des poids g, = cos 0, les n+2 Egs. 3.26, 3.27 déterminent uniquement
les n 4+ 2 paramétres inconnus py;, qi, @ = 0...1/2. Afin de trouver les p; et g,
des angles d'absorption totale. la construction du polynome interpolant sclon Newton
(page 87) peut étre utilisée.

2. L'ordre d’approximation (m, n’) avee 0’ + 2 = m est contenu dans U'lqn. 3.22 si nous
éerivons g = aup2 = 0 (n = m). Le nombre maximal d'angles qui peut étre
interpolé dans ce cas est (m+n' + 2)/2 = n; 1l s'en suit que gpey = 0: 11 0’y a pas
d’angle d'absorption totale correspondant i g, .

3. La formulation hi¢rarchique permet en général une distribution asymétrique des angles
d’absorption totale ainsi que des approximations de la racine dans 1'lign. 3.6 avec
moins que 7 + 1 angles d'absorption totale. Iin ce sens la formulation hiérarchique
est plus générale que la formulation de Higdon-Keys. Toujours est-il que n'importe
quelle approzimalion symétrique de l'équation d’onde unidirectionnelle avec un nombre
mazimal d’angles d’absorption posséde une unique formulation Higdon-Keys et une
Jornulation hiérarchique symétrique correspondante.

3.2.5 Coefficient de réflexion théorique des approximations de I’équation
d’onde unidirectionnelle

Le coeflicient de réflexion des ondes aux [ronticres est une mesure de la qualité des conditions
absorbantes aux limites. Afin de déterminer ce coeflicient de réflexion, nous considérons une
onde plane incidente a la fronticre x =0at =0

u(x, t: L < 0) = u; exp j(wt — kx)

ol u; est 'amplitude de I'onde incidente. A la frontiére, il y a un chapgement brusque de
la relation de dispersion due au remplacement de la racine par la fonction rationclle 7(s). Le
changement dans la relation de dispersion provoque un changement de la vitesse de phase
et donne un partie réfléchie et une partic transmise de l'onde

u(z,t;t > 0) = u, exp j(wt + kx) + 1, exp j{wt — kx)

ou u, est 'amplitude de 'onde réfléchie et ug est I'amplitude de l'onde transmisce. Le
cocfficient de réflexion théorique I ou coefficient de Fresnel pour l'onde réfléchie est défini
comme rapport de I'amplitude réfléchie sur 'amplitude incidente
r=2
U;
Si Pamplitude incidente u; est polarisée perpendiculairement au plan d'incidence on
obtient le coeflicient de Fresnel pour l'onde réfléchie a partir de la loi de Snellius comme
dans [Jon86, Chapitre 6.6].
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. A-B .
=i+ 5 (3.28)
ou
A = (‘_;, sin © cos ©

C

B = sinG)\/l - (%)2sin29

oll ¢ est la vitesse de phase pour le schéma intéricur et ¢ est la vitesse de phase pour la

condition aux limites.
A partir de la relation de dispersion du premier ordre

w—pockr =0

nous obtenons le rapport entre la vitesse de phase de la condition aux limites du premier
ordre (en utilisant les coeflicients de Padé) et la vitesse de phase pour le schéma intérieur:

'(—” =cos© (3.29)

ol nous avons utilis¢ k, = |k|cos ©.
A partir de la relation de dispersion du deuxieme ordre
pow2 —ckyw = Apy k;’ =0
nous obtenons le rapport entre la vitesse de phase de la condition aux limites du deuxi¢me
ordre (en utilisant les coeflicients de Padé) ct la vitesse de phase du schéma intériceur:

(”i) - Llesoz Vi ante (3.30)
c/x 2 2

Ici nous avons deux branches (%) pour les rapports entre vitesses de phase: La branche
avee le signe “+” détermine le cocflicient de réflexion alors que la branche avec le signe “-”
donne une vitesse de phase négative et ne correspond pas a une solution physique.

Les cocfhicients de réflexion de conditions aux limites du premier ou du deuxiéme ordre
sont obtenus en insérant I'EEqn. 3.29 (respectivement 1'EEqn. 3.30) dans les constantes A et
B de 'Eqn. 3.28.

Dans la littérature nous trouvons unc autre quantité aussi appelée “cocfficient de réflexion”
(p-cx. [Ren92)):

_r(s) = V1-=352

=

(3.31)
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Cette expression est une mesure de la qualité d’approximation de la relation de dispersion
au moyen de la fonction rationclle 7(s): Elle est égale a zéro pour des ondes incidentes sous
I'angle d’absorption totale et elle tend vers zéro lorsque ordre d’approximation augmente.

Les valeurs du coefficient de Fresnel pour Ponde réfléchie et la qualité d'approximation
selon I'Eqn. 3.31 sont montrées dans la fignre 3.3 pour des coeflicients de Padé et des angles
entre 0 et 90°,

Le coefficient de réflexion du premier ordre est sous-estimé par I'l2qn. 3.31. Le coeflicient
de réflexion du deuxieme ordre est bicn an dessous du coefficient de premier ordre et est
également sous-estimé par 'Eqn. 3.31.

3.2.6 La théorie des zones absorbantes

Lia condition des zones absorbantes ou “matched layer technique™ peut étre derivée comme
suit [Ber94): Considérons le cas TE avee £z = H; = H, = 0. Les équations pour un milicu
adapté ayant une conductivité électrique o ¢t une conductivité magnétique o* sont

b, +0E, = 0,1,
cohE,+ol, = =0.1I;
woH. + 0’ tl, = 0,F; — 0., (3.32)

Considérons une onde plane d’amplitude £y incidente sous 'angle u comme le montre la
figure 3.4. Les 3 composantes des champs sont alors données par

E. = —FEpsinoexp{iw(t — axr — 3y)}
E, = Focosdexp{iw(t — ax - fy)}
H, = H. cxp{iw(t—az - 3y)} (3.33)

[introduction dans les équations 3.32 donne des relations entre a, 3, Il et /1.,:

Fosing(cow +0) = Jiw H,, (3.34)
Egcoso(ipiw +0) = aiwfl,, (3.35)
Foiw(3sing + acosd) = (pow +0%)I,, (3.36)

Nous calculons a partir de ces équations, I'impédance de l'onde Z = Ey/ /1, comme suit.
La division de 'Eqn. 3.34 par I'Eqn. 3.35 donne

a coso
g sind

Nous calculons a a partir de I'Eqn. 3.35 et de 'Eqn. 3.36. Pour cela nous déterminons
d'abord /,, & partir de I'Eqn. 3.36:

(3.37)
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- ordre 1 Fresnel
— = = ordre 2 Fresnel
.......... ordre 1 qualité

1.2 ————71 " _.___ ordre 2 qualité

0.8

réflexion

0 30 60 90
angle d'incidence [degré]

Vigure 3.3:  Coeflicients de réflexzion
théoriques des conditions aur limites du
premier el deuziémne ordre.
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.. 3sino + acoso "«
H.y = lpiu O T X EOR (3.38)
Howw +0o*

A partir de 'équation 3.35 nous obtenons a? el que:

LCOS O
o= TF1

V(toiw + o) (pgivw — a*) (:3.39)
De méme on trouve avee 'lEqu. 3.37 32 tel ques

5= :Fisintb

V(eoiw -+ o) (poiw + o) (3.10)

w

L’introduction de « dans I'lFqn. 3.35 donne 'impédance

. _ ko [pnotw + a* .
Al ['1 - I.I:O - (0iw+0' (v}.dl)

Nous obtenons comme condition d'adaptation Zip = ZA[R

o a’
- = (3.42)

€0 Ho
I’onde incidente doit étre une onde Tl avee /, dans le plan de la fronticre. La méme
argumentation donne le méme résultat pour une onde TM avee £, parallele a la frontiere.
Les amplitudes dans une zone absorbante sont obtenues par insertion de « et 3 dans

I'Eqn. 3.33, par exemple pour /2,:

E, = Fgsin ge'Wte™ co8 s~ rinoly (3.43)

avece

I
w | o o*
€ — - o 3.
§=-— /(1 ,'€O)<1.i/ ) (3.44)

Par exemple, pour 'incidence perpendiculaire (¢ = 90°) nous obtenons
foy = koe~ ety (3.45)

[’atténuation des champs dans le substrat est determinée par la valeur réelle de . Pour

w .o .
o (1 + m) (3.46)

une zone adaptée nous avons

I

ou la partic réelle est
o
R(E)=—-—— 3.47
©=-= (3.47)
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En supposant que I'onde est réfléchie au bout de la zone absorbante. nous obtenons

comme réflexion a incidence normale
I' = e~ %770 (3.48)

ol é est 'épaisscur de la zone absorbante.

Si la condition qn. 3.42 est satisfaite, la conductivité o peut étre choisie aussi grande
que 'on veut pour obtenir une réflexion 1™ arbitrairement petite pour une épaisseur petite
queleonque.  lin pratique, un o trés grand donne des réflexions numériques.  Pour que o
ne devienne pis trop grand, on choisit une épaisseur de la zone d'absorption de plusicurs
mailles. I5n plus, des expériences ont montré qu une variation de o aide a réduire la réflexion
numérique. Un loi de variation avec un index n par exemple est donnée par

a(p) =m ( g) " (3.49)

La réflexion alors est donnée par

L
I = exp ——/ o(z)dx
0

(e
2 oub .
= vxp{— Z_} (3.50)
n—-—1 ¢c

3.3 Expérimentation numérique des conditions aux lim-
ites

Une fois qu’une approximation de 1'équation d’onde unidirectionnelle est écrite sous forme
d'une équation a dérivées partielles, clle doit étre discretisée afin d'obtenir une condition aux
limites discrétes. Le schéma d'extrapolation qui en résulte peuti étre utilisé afin d’estimer les
impulsions entrant aux nocuds limites de la grille de calcul. Les composantes des champs cn
modélisation TLM sont des superpositions linéaires des impulsions entrant dans un nocud
[Joh87]; cela est équivalent a I'extrapolation des 6 composantes du champ eléctromagnétique.

Dans ce qui suit nous allons décrire des discrétisations de la formulation sclon Lindmann
ct sclon Higdon-Keys et nous exposons nos résultats obtenus par expérimentation numérigue
des schémas aux limites correspondants.

3.3.1 Tests de la formulation de Lindmann et extrapolation espace-
temps dans le cas 2D

Nous avons montré dans la scction précédente que la condition aux limites selon Lindmann
(Eqs. 3.18, 3.19) cst une formulation alternative a la formulation hiérarchique symétrique.
Elle peut étre approchée pour le SCN par le schéma a différences finies
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cdy — DE((1 —a)l —aZ?)

O — DL =b)I +bK)

o — DL

&R — DD (3.51)

ou I, K ct Z sont des opérateurs de décalage délinis par

Tug, = g,
Kug, = uf,
Zug, = u(’,'j‘ : (3.52)
ct DDy sont des opérateurs de différence avant/ arricre de premier ordre pour des valeurs
aux bornes 118'“ lls sont définis par

Di = K'-1
Dt = [-K’
D, = z*-1
Dt = 1-777 (3.53)

lci l'utilisation de Z%2 au licu de Z*! respecte la proprieté de propagation lente du SCN.
Les coeflicients a and b sont des coeflicients de moyennage espace et temps et sont fixés a
a =b =0.5. Cette détermination particuliere est connue sous le nom de boz-scheme method.
La condition aux limites résultante est explicite et donnée par

M
ua‘;‘l = u’l‘j_l + -{—;{%(u’l‘}‘l _ ug;l) _ % g( m)n-l (3.54)
(n)e = 20m)e — ()" (3.53)
+ B ((rm)g_,_-:l 2("m)“—J + (Um)gJ__J
+ an (u(')'j—*_ll - 21101- + uoj_l qu - 211"_' "3;—31
+ “1,+1 2u|j ul_’_l: uu.l - 211." 3 -~ "11—31) .

aveern =1... M.

[’¢évaluation des fonctions de Lindmann selon les Egs. 3.514 ¢t 3.55 demande la con-
naissance des impulsions aux nocuds voisins dans la direction y ¢t pour cela ne peut pas
étre appliquée aux nocuds qui se trouvent dans les coins du domaine de calcul. Pour ces
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Figure 3.5: Grille de calcul et grille de
calcul de référence pour les tests en 2.

nocuds particulicrs nous utilisons un simple schéma d’extrapolation comparable au schéma
d'extrapolation espace-temps de premicr ordre (Eqn. 3.1).

Nous avons testé le schéina d'extrapolation des Egs. 3.54 et 3.55 en estimant les impul-
sions réfléchies aux limites d'une grille 2D de taille 100A7 x 50A¢ (A€ étant 'espacement
dans la grille), simulant 'espace libre. La grille 2D est constituée de nocuds condensés
symétriques de Johns; Suivant la troisitme dimension de l'espace nous avons appliqué des
conditions périodiques afin de restreindre le flux d’énergic en 2D. Pour permettre la com-
paraison, nous avons égalcment testé la “charge adaptée” et les conditions d'extrapolation
d’'espace-temps de premier et deuxieme ordre.

Nous avons excité la grille au centre en utilisant une impulsion douce (voir Figure 3.6)
définie sur un support compact par

Ul 25 = { 3(10 — 15 cosw{ + 6 coswy( — cosws() 2‘ § : (3.56)

avec & = 1/320, 7 = 40At, ( = nAl ct wn, = 27m/7, . = 1,2,3 {B1a88] [Moo88|.
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Nous avons calculé la réflexion aux limites de la composante du champ [, évaluée a
la premiere ligne des nocuds proches de la frontiere. La partie réflechie pure a ¢té obtenue
en soustrayant aux valeurs des champs obtenus. la valeur dans le domaine de rélérence; Le
domaine de référence a été choisi large afin que les impulsions calculées réfléchies a leurs
limites n'aient pas le temps de reveair (voir Figure 3.5). La distance entre les limites du
domaine de caleul ot les limites du domaine de caleul de référence est 25 muailles.

Des résultats numériques sont montrés dans les Figs. 3.7 a 3.10: La figure 3.7 montre
les réflexions dans le cas de conditions d’extrapolation espace-temps. La réflexion est nor-
malisée par rapport au maximum de la fonction d'onde, obtenu proche de la {ronticre au pas
d'itération 100. Pour le premier ordre d’extrapolation espace-temps nous avons obtenu une
réflexion de 5% (valeur maximale); Pour le deuxicme ordre d'extrapolation espace-temps
nous avons obtean une réflexion de 1 % (valeur maximale).

Dans la Figure 3.8 nous comparons l'effet de I'augmentation de I'ordre dans 'approximation
de I'équation unidirectionnelle avee des coeflicients de Padé: La réflexion pent étre réduite
jusqu'a 0.025 % cn utilisant une approximation d’ordre (4,4).

Dans la Figure 3.9 nous comparons l'effet de 'augmentation de lordre d’approximation
de 'équation unidirectionnelle avee les coeflicients interpolés aux points de Chebyshev. La
réflexion peut toujours étre réduite par augmentation de l'ordre d'approximation. Nous
avons observé cette réduction de la réflexion pour tous les familles d’approximation.

La figure 3.10 compare 6 différentes familles d’approximation: Nous concluons que la
réflexion moindre est obtenue en utilisant les coefficients de Padé.

Pour tous les schémas d’équation unidirectionelle, nous avons observé la création de
modes parasites: La Fig 3.11 montre la section droite de la fonction d’onde au pas de
temps 1000: A ce pas, toutes les ondes créées par I'excitation initiale sont supposées avoir
quitté la grille. La fonction d’onde résiduelle qui apparait sur la figure est due a l'excitation
ponctuelle initiale de la grille. Dans le cas des schémas d'équation d'onde unidirectionnelle,
cette fonction a é1é décalée dans l'espace. Une telle création de solutions non-physiques a
I'excitation initiale cst appellé instabilité [Aze68, page 28).

3.3.2 Tests de la formulation de Lindmann et de
I’extrapolation espace-temps dans le cas 3D

La formulation de Lindmann du probléme d’approximation de 1'équation d’onde unidirec-
tionelle en 2D est donnée par les Egs. 3.18, 3.19 et peut simplement étre généralisée en 3D;
Le sinus de 'angle incident © est alors donné par

c 2 -
5=~ [k2 + k2 =sin© (3.57)

ou ky et k; désignent les composantes du vecteur d'onde paralléles a la frontiere. On introduit
I'EEqn. 3.57 dans la relation de dispersion pour unc onde planc en 3D

w? =Pk + k2 + kD) (3.58)
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ot les fonctions de Lindmann de 'Eqn. 3.14 donnent la formulation de Lindmann en 31):

M
Po Po S
—_— 7 = — Uy 3.59
A — =" ,,,Ez. (3.59)

on les fonction de Lindmann peuvent éure déterminées en résolvant 'équation

Dt = Din? (92 + 02) vin = Pand (05 + 7)) u (3.60)

Les coeflicients o, and 73, prennent les mémes valeurs que dans la formulation 2D.

La discrétisation des Eqs. 3.59, 3.60 par analogie avee I'Eqn. 3.51 donne un schéma
fortement instable. Nous avons vérifié que cette instabilité vient de 'lqn. 3.60 scule en
remplagant le membre droit de cette équation par une fonction harmonique (correspondant
a une onde harmonique incidente sous un angle fixe).

L’instabilité forte peut étre évitée par une méthode de séparation pour la fonction d'onde
et des fonctions de Lindmann de la forme

w = u g

v + )

Um

ot les fonctions avece Uexposant (y) dépendent de la variable y sculement et les fonctions
avec exposant (z) dépendent de la variable z sculement.

Cette méthode de séparation nous permet de résoudre Eqn. 3.60 de fagon approximative
en résolvant

('),21.’,511 - /f,.,.c‘(‘);‘fv,"n = cza,,.('),(")iu
. : PPOIE - ~ o2 .
();2 v:n - ",’"lc-ofvln = CZQ,n()to.:ll (3(’ 1)

On remarque que, en faisant comme cela, nous résolvons exactement 1'Eqn. 3.60 unique-
ment pour des ondes dont le vecteur d’onde k est dans le plan (x-y) ou dans le plan (x-z).
Ainsi dans le cas géneral d’une onde incidente sous un angle arbitraire 4 la froaticre nous
ne nous attendons pas a avoir la inéme absorption que pour un ordre donné dans les calculs
2D.

Nous avons testé le schéma d’extrapolation des Fgs. 3.59, 3.61 discretisé par I'kqn. 3.51
numériquement; Pour cela, nous avons déterminé le “return-loss” défini comme —101og [|p]|,
ou p est le coefficient de réflexion évalué pour la composante du vecteur de Pointing /2,
proche d'une limite absorbante terminant un guide rectangulaire pour des [réquences de 0
a 150 GHz.

Nous avons excité le guide en appliquant I'impulsion douce de 'Eqn. 3.56 ¢n un plan
d’'excitation, constitué de tous les nocuds d’une section droite du guide et & une distance de 30
mailles de la frontiére. Tous les nocuds ont été excités avec la méme amplitude d'excitation.
Comme cela nous n'avons pas seulement excités le mode fondamental 7[5, mais un ensemble
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des modes supéricurs. Nous ne nous attendons alors pas a trouver les mémes résultats que
Fiswarappa ‘Esw94|, parce que notre excitation est plus général. Comme en 2D. un calcul
de référence nous a permis de séparer le signal total obtenu de la structure de test

.S.(.) = .S.(!) - pS(z)

avee le coeflicient de réflexion p. Les signaux S5y et Sgz; sont les signaux de référence
obtenus dans les plins | et 2 de la structure de référence (voir Figure 3.12).

Nons avons calenlé les signanx Syy;. Siny et Siay en intégrant. la partie réelle de la com-
posante du vectenr de Pointing 2. dans le domaine fréquentiel sur la section droite du guide
et sur 150 itérations: Le spectre du signal Sgp) dans le cas idéal devrait étre la transformée de
I'ourier de la fonction d'excitation [iltrée par le filtre passe-haut du guide (premiere fréquence
de coupure du guide fig = 21 Gllz) et le filtre passe-bas de la grille (coupure de la grille ou
fréquence de Nyquist fx = 1200 Gllz). Derriere 1a source (a4 gauche du guide) nous utilisons
la charge adapice. Le nombre d'itérations était limité a 150 pour que le signal de la sortie
1 du guide d'onde de référence ne contienne aucune partie de réflexion de la coté gauche du
guide (voir IYig. 3.12) avant la fin de la simulation.

Nous limitons le régime d'intérét & f < 1/10 fx, ce qui est la condition d’usage pour
permettre aux effets de dispersion de la méthode TLM d’étre négligés Hoe8S]. l.e spectre
du signal S;yjest montré sur la figure 3.13: [excitation de la grille était bonne pour nos
calculs.

Pour les nocuds aux coins nous avons appliqué un simple schéma d’extrapolation com-
parable & I'extrapolation espace temps de premier ordre de I'lEgn. 3.1.

Des résultats numériques sont montrés dans les Figs. 3.14 a 3.17: Premierement, pour
permettre la comparaison, la figure 3.14 montre le “return-loss” dans le cas d'une charge
adaptée et d'extrapolation espace-temps. Comme dans les expériences 2D, 'absorption la
plus mauvaise est obtenue en utilisant la charge adaptée. Le return-loss dans ce cas varie
entre 16 et 30 dB. Cela correspond a une réflexion dont la puissance est inféricure a 1%
(valeur moyenne). L’extrapolation espace-temps de premier ordre est légerement meilleure
(return-loss entre 20 et 30 dB). Pour le deuxicme ordre d’extrapolation espace temps nous
avons obtenu un return-loss de 10 dB3 supéricur au premier ordre. La puissance réfléchie
pour cela est inféricure a 0.1% daps le domaine spectral d’intérét (valeur moyenne).

Dans la Figure 3.15 nous comparons l'effet de 'augmentation de I'ordre d'approximation
en utilisant les coefficients de Padé: La réflexion n’est plus réduite de fagon continue en
augmentant l'ordre d’approximation. Comme on peut le voir clairement a l'ordre (4.4)
d’approximation, des modes parasites sont présents (le return-loss devient negatif pour cer-
taines fréquences) et donnent des perturbations dans I'estimation de la fonction d'onde aux
limites. Le return-loss ne dépasse pas le return-loss de l'ordre deux d'extrapolation espace-
temps sauf pour un petit domaine d’intérét (90-100 GHz, 120-130 Glz).

Dans la figure 3.16 nous comparons I'effet de I'augmentation de l'ordre en utilisant les co-
cfficients d'interpolation aux points de Chebyshev: Des modes parasites apparaissent comme
dans le cas des cocflicients de Padé (le return-loss devient negatif pour certaines fréquences)
et perturbent l'estimation de la fonction d’onde aux limites.
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La figure 3.17 compare les 7 différentes familles d'approximation: Aucune famille ne
dépasse de fagon significative la qualité d'absorption obtenue avec 'extrapolation espace-
temps de deuxieme ordre (qui est beaucoup plus simple) sur le domaine spectral total.
En plus, tous les schémas introduisent de Tinstabilité numérique. Cela peut étre vu plus
clairement par la valeur du return-loss devenant négative pour des fréquences particuliéres.

Nous résumons nos résultats comme suit: Pour tous les schémas d’équation d’onde uni-
directionnelle nous observons la eréation de modes parasites. Dautre part, le premier et le
deuxicme ordre d'extrapolation testés pour la comparaison semblent étre stables et donnent
des absorptions meilleures que la charge adaptée conventionelle.

La méthode de séparation introduit une approximation supplémentaire non-desirée cn
résolvant les conditions aux limites sous forme de Lindmann. On pourrait se demander si
une diserétisation plus générale des gs. 3.18, 3.19 pourrait. doaner un schéma plus stable
sans faire une approximnation supplémentaire. Suivant les idées de Fswarappa et al. [Esw94]
nous avons ¢tabli une méthode de diserétisation plus générale définie comme suit:

e — DE((1 —a)l +az7 ") (33.62)
d — p(DL+((1 =) +bKH)

FoE — DIDY((1 -a)l ~az"')?

D — pE DL+ QDL+ (1 = b)Y +bK*T)?

ou I, K et Z sont des opérateurs de décalage definis par I'kEqn. 3.52 ot o = c At/ Az est
le nombre de stabilité. Les ¢ sont des constantes d’amortissement. Leur introduction est
motivée par le fait que (9 — 9> + ¢)u = 0 possede des solutions qui décroissent exponen-
ticllement selon exp{—ct}i (i est une solution de (9 — 9,)it = 0): L'introduction de € est
vue comme 'addition d'une déceroissance exponentielle de la solution a Vorigine. Ce terme
rend le schéma d'extrapolation stable.

La discrétisation des Iigs. 3.18 et 3.19 au moyen de 'Eqgn. 3.62 doone un schéma a
différences explicite. De la propricté de la propagation lente du SCN, il découle que g = 1/2.
Afin de respecter la caractéristique de propagation du SCN nous avons remplacé Z~! dans
I'Eqn. 3.62 par Z~2. Il en résulte alors g¢ = 1. Le schéma d'extrapolation obtenu par cette
mdéthode de discrétisation a été trouvé fortement instable.

Pour des raisons de stabilité, une valeur typique utilisée dans les différences finies pour
le nombre de stabilité est ;2 = 1/2. Afin de respecter g1 = 1/2 ainsi que la caractéristique
de propagation du SCN, nous avons remplacé dans I'Eqn. 3.62 les deux K7t et Z7! par
K*2 et Z72. Le schéma d’extrapolation obtenu par cette méthode de discrétisation est alors
explicite et donné par

ughl = (1 —a)+pou(l = b)(1+0)"

x | (1= a) = popeb(1 + €)) uz X!
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~ (pop (1 = b) = a)ui!
hYs
~ (a5 pop UG = po Y (vin)is (3.63)

m=\

ou les fonctions discreves de Lindmann doivent ¢tre évaludes comme suit

-1

(i = (120 =501 +0))
< (- [((1 — D)X (=2+ 3+ 26(L = B)(1 +€)) (vin)is
+ (=021 =)+ 2B(1 - B)(=2+ %) +52(1 = ) @)z
= (201 - DL = )+ B (=2 D) (wa)g]
( (1 +‘)>( m)(')‘_,—knj
+ [y, ((1 —b) {(l +¢) [
(1 - a)? (“3,_-;;01\ 2“0,L - “31-321& + “8,_& 2 2"0,L + “o,A.3 2)
+2a(l —a) (118‘;2‘ 211.8]1,5 + ug;'_f'.zk + ll,(’)lj-ki_? - 21;8}1,5 -+ 'usj_ks_?)
+ a2 (u;;;jzk — T T el — 2ugT ug;k"_z)]
-
(1- 5)2 (“8:’% 2“0,A - “3_,—-52/: + “8;12 - 2"(';,1 "(')lj_ks 2)
+2a(1 — a) (ugj—:?k - Qu&-k’ + “01 ok u(’;jk‘ 2 2(18)1_ "SJ_L’ 2)
+a’ (”gj—qzk 2"0,L - “3;—9% - “kaiz - 2”3,1-9 + “3,_&9—2)]}
~b {(1 +¢) [
(1-a)? (U—gﬁ.u 2"2,L +ug;” et "2,& 2 2"2_,L "gﬁs 2)
+ 2a(1 — a) (u’;:’?‘ 221'2’11 Uy~ S + "'z',_kq 2“-’2'_,15 + u;‘ﬁf’_?)
+a* (“21;4-‘21; 211.'2'117 + u.’;l—_??k + “;;—kiz 2“‘2,L + ”).‘,_L‘ .,)1

- [ g

2 n— n-5
(1-a) (“z,o-zk 2“2,L + g, 2k+u21k72 2“-ka Uk 2)
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€ 9, n=7 . n=7
+2a(1l — a) ("2;— = 2y oy ok Fy g — 2""7_;k +”ka 2)
=2 ( n-9 n-9 _ 5 n-9 n=9 \’
ta ("2j+2k 2ug’ oyl = s — 205 +"21k—2)5}_‘
.
{- ‘l’,n |

(1 =) (i) n = 2 (0n)g") + () 2o
+ ety = 2 (mdg) + (0m)isz)
+2a(1 = @) ((om)57 = 2 (0n)ogi) + (0m) 57
F (om)ila = 2(0m)550) + (0n)5 5 2)
Fa (oo = 2@n)oi ) + (om)5

+ (Un)oriz = 2 (a ) ) ~ (v,,.)gjklg) J (3.64)

Ce schéma a également été trouvé fortement instable. Les valeurs testées pour les coefli-

cients de moyennage en espace-temps (a, b, @, b), (¢ = 0), sont (0.5, 0.5,0.0,0.0). (0.25,0.25,0.0,0.0)
t (0.25,0.25,0.25,0.25). Nous avons verifi¢ qu'il n'est pas possible d’enlever I'instabilité
pour d’auires valeurs de «. Dans tous les cas, la divergence est apparue tout de suite apres

que les impulsions soient arrivées aux limites.

Notre expérimentation numérique des schémas d'extrapolation présentés ci-dessus ne
nous donnait pas beaucoup d'espoir de trouver une méthode explicite proprement ab-
sorbante, derivée de la formulation de Lindmann du probleme d’approximation de 'éqnation
d'onde unidirectionnelle.

3.3.3 Tests de la formulation de Higdon-Keys en 3D

Il a ét¢ montré dans la Section 3.2.4 que la formulation de Higdon-Keys est é¢quivalente au
cas particulier de la formulation de Lindmann symétrique avec un nombre maximal d’angles
d’absorption. D'autre part, une discrétisation de la formulation de Higdon-Keys donne des
schémas d’extrapolation completement différents de ceux dérivées de la discrétisation de la
formulation de Lindmann. Premierement, dans la formulation de Higdon-Keys il n’y a pas
de fonctions de correction qui obéissent & unc fonction d'onde en 2D guidée a évaluer (on
rappelle que ¢'est 'équation a dérivées particlles déterminant ces fonctions de correction
qui provoque la divergence numérique). Deuxieémement, et contrairement a la formulation
de Lindmann, la formulation de Higdon-Keys demande toujours 1'évaluation de dérivées
particlles d’ordre élevé pour une approximation d'ordre élevé.

Afin de construire un schéma d'extrapolation nous écrivons la condition de Higdon-Keys
en introduisant des constantes d’amortissement ¢; (voir page 117):
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n-1
[[ (P -9 —cc)u=0 (3.65)
=1
oi1 ©,. i = 1...n+ | sont les angles d’absorption totale, g, = cos©; sont des poids ct
n+ 1 est Tordre de la condition absorbante aux limites. Nous obtenons de 'équation 3.65 un
schéma d'extrapolation en introduisant les approximations aux différences finis suivantes:

iy — DE(Q—a) +aZ7?)
d — DL((1=b) +bK) (3.66)

ou [, K ct Z sont des opérateurs de décalage définis par I'Eqn. 3.52 et D_ sont des
opérateurs définis par I'lgn. 3.53. Les parametres a et b sont des paramétres de moyennage
espace et temps. Dans les cas spéciaux n= 1 et n.= 2 I'liqn. 3.65 se réduit aveca = b =0
aux extrapolations espace-temps de premier et deuxieme ordre. Dans le cas général, nous
pouvoans écrire le schéma d'extrapolation resultant dans la forme

n+i

I Bug*' =0 (3.67)

i=1

avee les opérateurs 3, donnés par
Bi=1-c;27* - 3K '—5K'Z7?

avee des coeflicients d'extrapolation donnés par

) a—(l-b)g
o a—1—(1-b6)gi —¢;
5 = a—1+bg
a—-1-(1-b)gi—«
—a—bg,
Y o= 229 (3.68)

a—1—-(1-b)g —¢

Le schéma d'extrapolation de I'Eqa. 3.67 peut ctre évalué a chaque point limite de la grille
y compris les points d’angle; Un traitement spécial des coins comme pour la formulation de
Lindmann n’est pas nécessaire.

Comme cela a déja éué observé par Eswarappa et al., nous avons trouvé que de mettre
les parametres de moyennage espace et temps a a = b = 0.5 (méthode “box-scheme”) donne
un schéma instable. Dans les caleuls décerits ci-dessous nous avons pris a = b = 0.25.

Le schéma de I'lign. 3.67 peut étre implanté plus simplement de fagon récursive, comme
cela a été proposé par lang ct al. [Fan90]. Pour un ordre d’approximation n - 1 donné le
schéma est alors donné par
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Bl = (h )M

By ()t = (h)pt

By (/"2);':?! = (’1.‘5)'kf+l

3, ("'n—l):‘.'! = (h'n);:*;
anl (h-u):+! = 0 (36())

Nous apellons h; la fonction de correction numéro 7 de l'opérateur 13;.

On note que, contrairement a la formulation de Lindmann, 'ordre des dérivées partielles
évaluées ici n'est pas limité; Les fonctions de correction sont calculées elles-mémes par des
dérivées des fonctions de correction. Nous évaluons la fonction de correction h,, & x =0 ¢t
t = (n + 1) Al correspondant a la derniere des équations 3.69 comme suit:

(,"n 8“ = Qni) (”'n)(j—l + 31 (h-u)??l T Yn+l (,ln)’l‘—l

n+!

. -1 -1 .
Pour cela, nous avons besoin les valeurs (ha)g ™, (ha)77 " et (h,)] " de la fonction
. . n—1
de correction h,. Nous notons quc nous ne devons pas évaluer les valeurs de (1) et
n-1 . .. . .. N S . . +1
(hn)y p:nsqu'cllcs sont connucs ldc I'itération précédente (ol elles étaient appelées (hn)g
b { - . ~ s . .
et (ha)*). La valeur de (hn)3 ™" peut étre obtenue d'aprés Pavant-dernicre des équations
3.69 comme suit:

(h'n ,1'+‘ = (h.,,_|);‘+l — (xp (h'n-l)’;-1 - ,‘/3n (h'n—-l)"_;-i.l
= Yn (hnot)y " (3.70)
ot {k, 1} = {0,1},{1,0},{1,1}.

L’algorithme correspondant pour l'ordre n+1 est donné ci-dessous: Pour chaque itération
nous calculons les fonctions de correction pour k # 0:

(RFY = - e = At - gy
pourk=1...n
1-21 +1 - -
(h2)i* = (m)" = (b))t = Be ()pT) — v (R)PT)
pourk=1...n—1
+1-21 L - + -
(ha)y = (M)t —aa(h)r ! = B (h2)pry —¥3 (h2)pi)

pourk=1...n—2

S o I e (RS
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— Tn (hn—l)::l‘

pour k = |
(3.71)
Nous évaluons ensuite les fonctions:
(ha)o™ = aupr (hadg ™"+ Buer ()P + g (R
(hac)gt' = (b)) F B ()T + An ()P = (Ba)g
(h'n—?)(’;.H = (X, (hrx—2)3—l + Ba-1 (’ln_2)111+1 + Yn-1 ("’-n--2)’|‘_l + (hn—l 3+|
(hM)o™ = ()Tt = B (b)) ()T ()
ugtt = agup! + Bulm )T+ (Ir,l)(')”"1
(3.72)

Pour une implantation numérique de 'ordre n + 1 donné, des conditions aux limites de
lordre ! + 1; n’ < n peuvent étre simulées en mettant toutes les fonctions de correction
jusqua n’ égales & zéro.

L.es angles d’absorption totale ©, qui déterminent les coefficients d’extrapolation «;, 8;
ct 7, peuvent étre distribués arbitrairement dans Pintervalle [0°...90°]. Si les limites sont
loin des régions d'excitation ou de dispersion, le front d’onde proche des limites peut étre
approché localement par unc onde plane. Alors les angles d’absorption totale peuvent étre
mis ¢gaux a l'angle d’incidence de P'onde touchant les limites. Cela donnerait une bonne
absorption méme avec une condition aux limites d’ordre faible. Puisque 1'angle d’incidence

et le poids correspondant
k2
g =cosQ; = [ F—7F—— (3.73)

V K2+ kD + k2

sont cn géneral inconnus, on pourrait. estimer les poids au moyen des dérivées en direction
des axes de la grille, utilisant le schéma a différences finies:

IR

Ghkew=0.u DI ((L—a)[ +Z7") ug
|
hyu=0,u = (D} +D2)((1=a)l +77") ugy
jkow=0u = %(Di+1)‘_) ((1=a) +Z7") ug,s (3.74)

ou les opérateurs I, Z, et D+ sont définis par les Eqs. 3.52, 3.53. l.e paramctre de moyennage
dans le temps a était fixé dans nos caleuls a @ = 0.5. En insérant I'Eqn. 3.74 dans 1'Eqn. 3.73
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on a un estimateur pour les poids inconnus de chaque point limite de la grille sauf pour les
points dans les coins.

Des premiers caleuls npumériques en utilisant Valgorithme du schéma dextrapolation des
Iigs. 3.71 3.72 ont. indiqué que des instabilités aparuixs‘cnl pour lordre n—=1 2> 3. Les facteurs
d’amortissement ¢, = 0.1 (¢; = 0.2) retardent ces instablités mais ne les colevent pas.

Nous avons testé I'implantation récursive de la condition de Higdon-Keys selon les
Egs. 3.71, 3.72 jusqu’a l'ordre 5 avee un guide d'onde rectangulaire terminé par des con-
ditions absorbantes anx limites déerites dans la Section précédente (comp. page 110). Les
résultats de nos caleuls sont moantrés sur les figures 3.18 4 3.21:

La figure 3.18 montre l'effet de I'augmentation de 'ordre pour la coadition de IHigdon-
Keys sans amortissement (¢ = 0) et l'approximation de Padé. Le return-loss obtenu avee
la condition de IHigdon-Keys de premier ordre est similaire a celui obtenu avee la condition
d'extrapolation espace-temps de premier ordre (on remarque que pour ¢ = b = 0.0 les
conditions seraicnt identiques). L'augmentation de lordre d’approximation entraine unc
diminuation du return-loss dans une large bande de fréquences. Nous concluons que le
schéma aux limites des Egs. 3.71, 3.72 pour ¢ = 0 donne de mauvais résultats pour des
approximations de I'équation d’onde unidirectionnelle d'ordres elevés.

Dauns la figure 3.19 nous montrons I'effet de U'introduction des constantes d’amortissement
afin de rendre le schéma aux limites des Eqgs. 3.71, 3.72 stable. Le return-loss pour P'ordre
3 est légerement amelioré autour de 100 Gllz en augmentant «. Le résultat reste loin d'étre
satisfaisant. Nous concluons que le schéma aux limites donne de mauvais résultats meme
apres I'introduction des constantes d'amortissement ¢.

La figure 3.20 montre le return-loss pour la condition de Higdon-Keys d'ordre 5 avec
différentes distributions d'angles d’absorption totale et constantes d’amortissement: Ni la
distribution d'angles d'absorption totale ni la distribution de constantes d’amortissement
ne semblent avoir d'influence significative sur le return-loss. Le return-loss reste toujours
comparable a celui obtenu avee la condition plus simple d'extrapolation espace-temps de
premier ordre.

La figure 3.21 montre les résultats obtenus en utilisant 'estimation des angles: Lo pre-
micr et deuxieme ordre du schéma de Higdon avece estimation de 'angle est 1égérement
meilleur que le premier et deuxi¢me schéma sans estimation de 'angle. Augmenter ordre
d’approximation entraine toujours la création de modes parasites, donnant une dégradation
du return-loss sur une large bande spectrale.

_ Nous avons essayé de lisser les fluctuations rapides de I'estimateur du poids ¢ = cos &)
(© étant I'angle estimé) en le remplageant par un estimateur moyen du poids obtenu comme
moyenne aritméthique des estimations pendant les 9 dernieres itérations. Le lissage n'a
gucre d’effet sur le return-loss.

Nous concluons que l'estimation de 'angle n'est pas une méthode prometteuse pour
obtenir de la condition de Higdon-Keys un schéma stable d’absorption satisfaisante des
ondes.

Nous notons que nous avons trouvé qu'environ 50 % des poids estimés § = cos O sont
dans Pintervalle [§(® — 0.1, + 0.1]. Pour cette raison nous doutons que 'estimation
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Figure 3.18: Return-loss pour la con-
dition de [igdon-Keys pour des ordres
croissants.
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Figure 3.19: Return-loss pour la condi-
tion de Iligdon-Keys de troisiéine ordre
avec des constantes d’amortissement
croissantes.
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Figure 3.20: Return-loss pour la condi-
tion de Iligdon-Keys de l'ordre 5 avec
constantes d’amortissemnent et diverses
distributions des angles d’absorption to-
tale.
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des angles en utilisant des dérivées particlles explicites de différences finies (voir Iiqu. 3.71)
puisse étre utilisée en combinaison avec des schémas aux limites d'ordre faible afin de réduire
les réflexions résiduetles.

3.3.4 Filtrage numérique pour des conditions
d’extrapolation

Dans les Sections précédentes nous avons vu que lefficacité des conditions d'extrapolation
cn 3 dimensions est limitée. Par opposition aux caleuls en deux dimensions, absorption
mesurée au moyen du return-loss — n’augmente pas avec I'ordre d'extrapolation. L'application
des conditions d’extrapolation mene alors a la création de modes non-compatibles avee les
conditions initiales. Ces modes parusiles peuvent étre supportés par la grille TLM du fait
de I'échantillonnage spatiale. Ils limitent I'efficacité des conditions d’absorption.

Une technique de filtrage des modes parasites a été proposée par Chen et al. [Che93].
[.'idée de Chen et al. est la suivante: Nous avons vu qu’une condition d'extrapolation peut
toujours étre écrite sous la forme (cf. par ex. Fqs. 3.69):

B (ug;) =0 (3.75)
Nous admettons des modes a la fréquence Nyquist fy = 1/2A¢ cn éerivant

(1+Z72K)B (ug,;) =0 (3.76)

¢’est a dire que nous permettons des amplitudes ¢ tel que

B(ugj) =
Z7PKB(ug;) = B(u][?) = —c (8.77)

La condition de I'Eqn. 3.76 permet des modes a la fréquence Nyquist. L'opérateur
(1 + Z72K) peut étre interprété comme filtre numérique pour l'opérateur d'extrapolation
B: 1l limite U'effet de l'opérateur B aux modes d'une {réquence inféricure 4 la fréquence de
Nyquist. On s'attend alors a ce qu'cn appliquant la condition de I'Eqn. 3.76, les modes a la
fréquence Nyquist ne seront pas renforeés ou, autrement dit, que les modes parasites créés
par l'opérateur d'extrapolation sont annihilés.

La condition de I'Eqn. 3.76 supposc que les modes a la fréquence Nyquist se propagent
dans la direction perpendiculaire aux limites du domaine de calcul. Une généralisation de
lopérateur (1 + Z72K), qui tient compte de Pangle d’incidence ainsi que de Pordre de
I'approximation, a été proposée par Chen et al. : Soit l'opérateur d'extrapolation

N
B=) a;K'z7% (3.78)

i,y=0
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Alors une condition dextrapolation avee anihilation des modes parasites (AMP) a la
réquence de Nyquist est donnée par

N
(3 (=1'ai, K Z7*)B (ug,) =0 (3.79)
i.)=0

Pour les conditions d'extrapolation espace-temps de premier et deuxieme ordres (Fgs. 3.1
ct 3.2) on obtient alors avee un [iltrage numérique selon I'lgn. 3.79

1 -3 . .
ug;'k —uy, = 0 premier ordre (3.80)

n+l n-3 n-7v __ N - . R .
Ugse — 2"2;’1: tugy = 0 deuxieme ordre (3.81)

Nous avons implanté ces conditions aux terminaisons du guide d'onde décrit dans la Sec-
tion 3.3.2. Pour ce calcul nous avons utilisé comme excitation une gaussienne. Nous avons
verifié que le signal en puissance passant par la sortie 1 (cf. Fig. 3.12) ¢était suflisamment
grand jusqu’a 90 Glz. La figure 3.22 moatre I'effet de I'opérateur d’annihilation des modes
parasites a la [réquence de Nyquist pour le premier et le deuxi¢me ordre d'extrapolation
cn cspace-temps: L return-loss ne change guére par rapport & ’application de la con-
dition d'extrapolation espace-temps sans filtrage numérique. Le deuxicme ordre donne
unc amélioration du return-loss par rapport au premier ordre et le premier ordre donne
unc amélioration du return-loss par rapport a la condition de charge adaptée. Le nombre
d'itérations était de 150, i.c. relativement faible, de méme que pour les calculs dans la Section
3.3.2.

Nous concluons a partir de la figure 3.22 qu'une annihilation des modes parasites au
moyen d'un filtrage numérique selon I'liqn. 3.79 n’apporte aucune amélioration de I'absorption
des ondes. Cela indique que la plupart des modes parasites qui perturbent I'efficacité des con-
ditions d’extrapolation se trouvent a une fréquence plus basse que la fréquence de Nyquist.

Chen et al. ont aussi publié des résultats obtenus sur le return-loss d’un guide d’ondes
rectangulaire terminé par des schémas d'extrapolation avece filtrage numérique selon I'lEqn. 3.79.
Ils ont calculé le return-loss directement & partir du taux d'ondes stationnaires évalué en
mesurant 'amplitude minimale du champ et 'amplitude maximale du champ en fonction de
la fréquence!. Par contre, ils n'ont pas comparé leurs résultats aux résultats obtenus avec
les mémes schémas d’extrapolation sans filtrage numérique. Nos résultats indiquent que les
résultats dans la précision obtenus par Chen ct al. auraient ¢té les mémes s'ils avaicnt utilis¢
leurs schémas d’extrapolation sans filtrage numérique. Par contre, Chen a montré que la
stabilit¢ est meilleure avee la méthode de filtrage [Che92).

'I’amplitude d’une onde particllement stationnaire varie en fonction de la distance au
saut d'impédance. L'amplitude minimale et 'amplitude maximale sont alors les valeurs
minimales et maximales de 'amplitude de 'onde cn fonction de la distance.
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3.3.5 Application de la théorie des zones d’absorption pour le noeud
condensé symétrique

Des zones d’absorption ont été testés en 2[) pour une combinaison de la méthode des
différences finies et de la méthode TLM par Eswarappa et al. {Esw95:. Les zones d'absorption
ont ¢té introduites dans la partie de la grille traitée par la méthode des différences finies.
Le return-loss pour la condition de Bérenger (théorie des zones absorbantes) avee une zone
d’absorption de 20 mailles a éLé trouvé supéricur & 50 dB et par contre le return-loss powr le
denxieme ordre d'extrapolation basé sur I'équation unidirectionelle a été de 25 dI3. C'ela nous
a encouragé i essayer d'introduire des zones d'absorption pour le nocud condensé symétrique
en 3D également.

Nous rappelons que la théoric des zones d'absorption nous dit que nous pouvons min-
imiser la réflexion d'une zone d’absorption de la fagon suivante: Nous introduisons une
conductivité magnétique o” (cf. Section 3.2.6). L'impédance du milicu absorbant 7’ devient

alors (cf. Eqn. 3.41)
1 - jo /wp.
3.8
\/‘\ 1—jowe (3.52)

Pour I'absorption d'une onde incidente perpendiculaire a la fronticre entre un milicu
d'impédance Z = y/p/c et un milieu absorbant il faut que Z’ = Z. Cela est réalisé dans le
cas ol

-7 (3.83)

L’onde va étre affaiblie en pénétrant dans la région de conductivité o ou I'affaiblissement
sera d’autant plus grand que la conductivité sera grande. En principe, o peut étre choisi
queleconque pourvu que I'Eqn. 3.83 soit satisfaite. Une scule maille avec une conductivité
assez forte serait donc capable d'absorber toute I'énergic incidente. En pratique, une forte
variation de o introduit des réflexions nnmériques. La zone d’absorption est alors choisie
d'une largeur de plusicurs mailles ou on établit une variation de o le long d’un axe x per-
pendiculaire a la frontiére selon

g =00(%;)n (3.84)

ou 6 est la largeur de la zone absorbante et n est I'index de la variation: Pour n =0, la
variation cst constante, pour n = 1 la variation est linéaire et pour n = 2 la variation est
parabolique. La réflexion R est obtenue en introduisant I'Eqn. 3.84 dans 1'lqn. 3.48; On
obtient alors

2 0'06
R=c¢ - = : b5
R €oC (3.85)

Pour une valeur de R, une largeur de zone absorbante § et un index de variation n donné,
I'Eqn. 3.85 détermine la valeur de oy.
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Nous avons introduit une conductivité magnétique o* dans la matrice du nocud condensé
symétrique en introduisant un stub de conductance magnétique pour chacun de axes z, y et
2. La valeur de la conductance est donnée par

Gl = 0" ZoS (3.86)

Les stubs ont éué introduits dans la matrice de répartition par symétrie en changeant les
éléments de 'lEgn. 2.87 comme suit

_ G+Y + -7
N AC+Y +4) T AC + Z + 1)
o C+y Gz
¢ AC+Y +4)  2(C* +Z+4)

4
d=t = sa=z=a)

. 1+G* -7 -
Jo= Ty 1= (3.87)

Nous avons testé la méthode d'introduction d'une zone absorbante dans le calcul du
guide d'onde rectangulaire terminé par des conditions absorbantes décrites dans la Section
3.3.2. Alin de pouvoir introduire une zone de 10 mailles nous avons multiplié les dimensions
le long de I'axe principale x par un facteur 3. Nous avons également augmenté le nombre
d’itérations d’un facteur 3, afin que le signal de la réflexion passe enticrement par le plan de
sortic 1 (cf. Fig. 3.12).

Nous avons fait les calculs pour deux types de variations, linéaire ct parabolique. Nous
avons fait les mémes calculs en introduisant la conductivité magnétique pour adapter une
transition AIR-AIR (Z = Z g, “matched layer” ou ML) et en utilisant seulement une con-
ductivité électrique =ans adaptation d'impédance, c'est 4 dire sans conductivité magnétique
(“absorbing layer” ou AL) Nous avons fait les calculs pour trois valeurs de réflexion R =
0.001, R = 0.01 et R = 0.1. Ces valeurs pour la réflexion ont été calculées en utilisant
I'lZqn. 3.85, ct en supposant que le domaine de calcul était terminé par un mur électrique.
Dans nos calculs, nous avons appliqué des conditions de charge adaptée aux limites; On
s'attend alors & une réflexion encore plus faible que celle donnée par la valeur de 2.

Dans nos calculs, nous avons trouvé que U'influence de la variation linéaire ou parabolique
est négligeable. La figure 3.23 montre les résultats pour la variation parabolique: La vari-
ation de R reste esscnticllement sans influence. Les résultats pour 'adaptation AIR-AIR
correspondent au résultat avee charge adaptée sans zone d’absorption. Dans le cas de zones
d’absorption sans adaptation d'impédance (sans conductivité magnétique), la réflexion est
plus important qu’avee une charge adaptée sans zone d’absorption. I’adaptation AIR-AIR
n’apporte alors aucune amélioration par rapport & la condition de charge adaptée.

Dans le cas sans adaptation d'impédance, le résultat n’est pas surprenant car on s’attend
des réflexions due au changement de I'impédance. Dans le cas avec adaptation d'impédance.il
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faut dire que les couches absorbantes demandend upe incidence normale en général. Dans le
guide I'incidence n'est pas normale proche de la fréquence de coupure. Pour cela. la couche
absorbante donne des mauvaises résultats.

Nous avons alors fait des calculs en adaptant spécifiquement le mode principal de prop-
agation 1'I9y dans le guide pour une fréquence donnce. L'impédance du mode T/ g est
connue analytiquement; Elle est montrée en fonction de la [réquence dans la figure 3.24.

La conductivité magnétique o° est alors donnée en fonction de I'impédance d'onde 7
dans le guide (mode 7))

7 _ 72
5 =

La figure 3.25 montre 'effet de 'adaptation de I'impédance d'onde pour 3 fréquences:
Le maximum de return-loss trouvé autour de 37 GHz ne change pas avee la fréquence
d’adaptation. Nous ne constatons alors aucun effet de 'adaptation d’impédance sur Peflicacité
de I'absorption de la zone absorbante.

Lies essais avec la matrice du nocud condensé symétrique modifi¢ afin de simuler une
conductivité magnétique ne sont pas encourageants. Dans aucun cas, la condition la plus
simple a appliquer, la charge adaptée, n’a pu étre ameliorée au moyen d’unce zone absorbante.

Comunentaire:

® Les unités utilisées dans la méthode TLM ne sont en géneral pas des unités SIL 1 est
plus pratique de normaliser 'impédance dans I'air comme Za g = 1. IEn outre, nous
mesurons la longucur en mm. Pour les unités nous avons donc

Gyt = 7y TLMZ0[377Q A¢[mm]

ct alors

377
%u. TLM = 1ggp%u. SI

3.3.6 Application des conditions d’extrapolation pour des calculs
de lignes micro-rubans

Nous avons alors testé les conditions d'extrapolation afin de terminer le domaine de calcul
dans le cas de la simulation d'une ligne micro-ruban. La question a poser est: Est-ce
que l'application des conditions d'extrapolation peut améliorer les calculs d’évalnation des
parametres ct de la distribution des champs des structures micro-ruban traitées dans le
Chapitre 1 ?

Pour pouvoir répondre a cette question, nous avons appliqué les conditions d’extrapolation
cspace-temps au bout d’unc ligne micro-ruban afin de terminer la partic AIR-(extéricur du
domaine de calcul) et afin de tenmniner la partie AIR/di¢lectrique-(extéricur du domaine de
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Impédance d'onde pour le mode TE10 .
dans un guide rectangulaire de type WR28
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calenl).  Nous avons également appliqué les conditions d'extrapolation non sculement en
bout de ligne, mais tout autour du domaine de caleul.

Afin de tester le cas d'extrapolation a la frontiére AIR-(extéricur du domaine de cal-
cul) nons avons déterminé le return-loss pour la réflexion an bout du domaine de caleul.
I’application des conditions d'extrapolation a ce cas n'a apporté aucune amélioration par
rapport a la condition de charge adaptée. Cela peut etre expliqué par le fait que la prop-
agation se fait avee une distribution de champs proche de celle du mode TEM. L angle
d “incidence de T'onde est alors proche de 0 degrés. Dans ce cas les conditions de charge
adaptée absorbent toute énergie, aussi bien que les conditions d’extrapolation.

['application des conditions d’extrapolation dans le cas AIR/di¢lectrique-(extéricur du
domaine de caleul) est montrée dans la figure 3.26. La terminaison de la ligne par charge
adaptée dans le di¢lectrique est également montrée dans la figure. La charge adaptée dans
le di¢lectrique est obtenue en appliquant un facteur de réflexion I' = (1 — ) /(1 + /C57)
aux impulsions sortant la grille (cf. Section 3.1). La figure montre la tension entre le ruban
et la masse en fonction du temps et a une distance d'environ 100 nocuds de 'excitation. La
forme de P'excitation ¢tait une gaussicnne.

LLa figure montre le signal, suivi de la réflexion en bout de ligne pour une charge adaptée,
une extrapolation espace-temps du premier ordre et une extrapolation espace-temps du
deuxieme ordre. La réflexion est minimale pour la condition de charge adaptée. Elle devient
plus importante pour la condition d’extrapolation espace-temps du premier ordre et elle
devient encore plus importante pour la condition d’extrapolation espace-temps du deuxieme
ordre. Cela peut étre expliqué par le fait que I'application de I'extrapolation espace-temps
suppose une vitesse de propagation cg, la vitesse de la lumicre en espace libre. Par contre
les ondes dans le diélectrique se propagent avec une vitesse proche de co/,/fof. Liv condi-
tion pour la vitesse de propagation des ondes n'est done pas satisfaite pour ces conditions
d’extrapolation.

Nous avons ¢galement appliqué les conditions d’extrapolation non sculement au bout
mais autour de la ligne pour la partic AIR-(extéricur du domaine de calcul). Aprés 1500
itérations, dans le cas de Pextrapolation du premier ordre, nous avons remarqué le com-
mencement des instabilités qui produisent une distribution de la puissance guidée dans tout
I'espace de caleul. Cet cffet est encore plus grand dans le cas de 'extrapolation du deuxi¢me
ordre. La puissance guidée apres 1500 itérations est montré dans la figure 3.27. Le niveau
blanc commence a 1% de la valeur maximale. On voit qu'une partie de la puissance apparait
4 proximité des limites du domaine de calcul. En plus, la puissance o'est. plus proprement
guiddée.

Nous concluons que I'application des conditions d’extrapolation n’apporte aucune amélioration
pour les caleuls des lignes de transmission micro-ruban. Au contraire, I'application des con-
ditions d'extrapolation mene pour des temps de calcul élevés (de l'ordre 1000 itérations) a
des instabilités numériques, conduisant a une perturbation de la distribution de la puissance
guidée dans le domaine de calcul.
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Figure 3.27:  Distribution de la puis-
sance guidée en basse fréquence pour
une ligne de lmnsmission micro-ruban
et des conditions d’cztrapolation du pre-
mier ordre autour de la ligne aprés 1500
itéralions.
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3.3.7 Application des conditions d’extrapolation avec le noeud con-
densé asymétrique

Nous avons vu que meéme la condition d'extrapolation la plus simple, extrapolation espace-
temps 1 donne des instabilités avee le nocud condensé symétrique. Maintenant on peut se
poser la question de savoir sicela reste vrai pour les autres nocuds aussi. en particulier
pour le nocud condensé asymétrique. Pour répondre a cette question. nous avons remplacé
dans le programme TLM la matrice du noeud ponctuel symétrique par la matrice du nocud
ponctuel asymdétrique. Nous avons testé différents conditions d'extrapolation.

D’abord, nous avons trouvé que méme si la condition d'extrapolation espace-temps du
premier ordre est instable avee le noeud pooctuel symétrique, elle est stable avee le nocud
ponctuel asymétrique. Les conditions supérieures a la condition espace-temps du premier
ordre ont ¢té trouvées instables pour les deux noeuds. Nous nous sommes donc interessé
a la question, de savoir si on obticat une meilleure absorption avee la condition d’espace
temps 1 et le nocud pooctuel asymétrique qu'avee la charge adaptée.

Pour cela nous avons mesuré le taux d’ondes stationnaires a nne fréquence donnée pour
le nocud ponctuel asymétrique dans un guide d’ondes rectangulaire. Nous avons trouvé pour
les deux conditions, espace-temps | et charge adaptée, un return-loss d'environ 15 dB. Nous
constatons alors que 'extrapolation espace-temps | n'apporte -+ méme si clle est stable —
aucune amclioration par rapport a la condition plus simple, la charge adaptée.

Parce que le nocud ponctuel symdétrique est d’une part symétrique et d’autre part moins
dispersif, nous avons choisi de rester pour la suite du travail avee ce noeud au licu d’utiliser
le nocud ponctuel asymdéirique.

3.4 Conclusion

Dans les Sections précédentes nous avons présenté des schémas d'extrapolation explicites
généraux basés sur des approximations de 'équation d’onde unidirectionnelle. Nous avons
appliqué ces schémas afin d'estimer les impulsions entrant aux portes limites d’une grille
T'LM limitée et nous avons compar¢ la réflexion des ondes aux limites avee la réflexion
des ondes obtenues utilisant la “condition classique™ de charge adaptée et les premier et
deuxicme ordre d’extrapolation espace-temps. Nous avons discuté la possibilité d’améliorer
I"absorption obtenue par ces schémas en utilisant des techniques de dissipation numérique, de
filtrage numérique et en introduisant des zones d’absorption. Nous avons ensuite expérimenté
la possibilité d'utiliser des conditions d’extrapolation afin d’améliorer les calculs des pro-
priétés des lignes de transmission micro-ruban. Nous allons résumer nos résultats et donner
unc perspective pour un futur travail.
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3.4.1 Conditions absorbantes aux limites basées sur des schémas
d’extrapolation

De nos caleuls nous concluons que toutes les conditions aux limites explicites basées sur la
discrétisation des approximations de 1'équation d’onde upidirectionnelle sont instables. Les
instabilités peuvent étre typiques pour l'interaction des schémas discrets avee le SCNj elles
oc sont pas identiques pour les autres noeuds (p.ex. le nocud condensé asymétrique ou ACN,
voir [Sag89))

Nous avons dit que le SCN possede des modes parasites proches de la fréquence de
Nyquist (la fréquence de coupure pour la grille); alors que FACN pe les possede pas. Nos
résultats n'indiquent pas que des modes parasites aparaissent proches de la [réquence de
Nyquist. Au contraire, nous trouvons dans nos calculs des modes parasites (indiqudés par un
return-loss négatif pour des fréquences discrétes) bien au dessous de la fréquence de Nyquist
(comp. Fig. 3.17).

Il a été rapporté que la méthode TLM utilisant le noeud condensé symdétrique est
¢quivalente a un schéma a différences finies de niveau supérieur. Il n'a jamais été déterminé
quelles sont les conditions qui doivent étre satisfaites pour qu'un schéma a différences finies
appliqué aux impulsions qui se propagent dans la grille TLM soit stable.  Des schémas
d'extraplolation basés sur une approximation de 'équation d’onde unidirectionnelle deman-
dent en particulier une méthode qui est stable pour calculer les dérivées partielles sur la
grille.

‘Tous nos schémas d'extrapolation envisagés étaient des schémas explicites. 11 est reconnu
dans la littérature que des schémas implicites sont souvent stables dans des situations on
des schémas explicites sont instables. La diserétisation implicite des opérateurs a dériveées
partielles - méme si cela demande un effort de caleul plus important - pourrait pour cela
donner des schémas stables.

Meme les conditions les plus simples testées ont éié trouvées instables pour des temps de
calcul élevés (1000 itérations et plus). Nous concluons qu'aucune des conditions testées n'est
favorable pour faire des calculs d'espace ouvert en utilisant la méthode TLM et le nocud
condensé symétrique.

Pour la condition d’extrapolation espace-temps du premier ordre nous avons trouvé
qu'clle est stable si on change le nocud ponctuel symétrique en un nocud ponctuel asymétrique.
Par contre, nous n'avons pas obtenu une absorption avee cette condition et le nocud ponctuel
asymétrique qui soit meilleure que la charge adaptée. Pour les conditions supéricures a
I'espace-temps 1, la méthode reste instable méme avee le noeud ponctuel asymdétrique.

3.4.2 Conditions d’absorption aux limites et techniques des zones
d’absorption

La technique d'introduction des zones d’absorption peut ¢tre envisagée soit pour améliorer
les résultats obtenus avee les conditions d’extrapolation, soit comme technique indépendante
pour limiter un domaine de calcul. En tout cas, I'absorption obtenue doit étre supéricure a
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l'absorption obtenue dans le cas de la condition la plus simple, la charge adaptée, pour que
les zones d'absorption apportent une vraie amélioration.

Nous avons teste des zones d'absorption adaptées et non-adaptées pour différents parameétres
d’absorption. Afin d’adapter impédance du milicn absorbant. nous avons modifié la ma-
trice de répartition du nocud condensé symétrique en introduisant des stubs de conductance
magndétique. Dans aucun de nos calculs. les résultats obtenus n'étaient meilleurs que ceux
obtenus pour la condition de charge adaptée de la grille.

Une autre possibilité d’introduction des zones d'absorption consisterait i appliquer la
théorie des zones absorbantes pour unc grille traitée an moyen des différences finies ot une
connexion de cette grille a une grille TLM ea 3D comme cela a été effectué par Eswarappa
ct al. [Esw95|. Le probléme que nous y voyons est quune connexion de la méthode TLM
avee la méthode des différences finies en 31 demande une zone intermédiaire {Esw96!. Nous
avons d¢ja va pour les conditions d’extrapolation que le probleme des modes parasites —
qui provoque une limitation de 'absorption — devient plus severe lorsqu'on passe de 2D
a 3D. En plus, 'efficacité des zones d’absorption dans nos calculs n'est pas meilleure que
Peflicacité de la charge adaptée 2. Bien que nous n'ayons pas trouvé de données dans la
littérature qui penvent prouver cette supposition, les résultats sur 'absorption en 3I) avee
les schémas d’extrapolation suggérent que les mémes problemes de stabilité vont apparaitre
cn 30 en utilisant la méthode des différences finies.

Nous concluons alors que les techniques de zones d’absorption ne sont pas prometteuses
pour réduire la réflexion aux limites du domaine de calcul par rapport a la condition la plus
simple, la charge adaptée de la grille ‘TLM.

3.4.3 Une approche plus directe des conditions
absorbantes aux limites pour la méthode TLM

La différence conceptuclle principale de la résolution des équations a dérivées partielles avec
la méthode TLM et avec la méthode & différences finies vient de ce que les champs electro-
magcétiques en un point donné de T'espace avee le schéma a différences finies sont évalués
cn résolvant une équation explicite (ou implicite), alors que dans la modélisation TLM la
propagation des champs est simulée plus directement par des impulsions se propageant le
long des lignes de la grille. Le mécanisme de propagation est décrit par des matrices de
répartition attachées aux nocuds de la grille. La propagation des champs dans la méthode
TLM est done liée aux matrices de répartition des nocuds.

La matrice de répartition pour le SCN a été dérivée directement des ¢quations de Maxwell
en utilisant une décomposition matriciclle [LoV93]. Les impulsions de la méthode TLAM ont
é1¢ identifices aux invariants de Riemann connus de la théorie des équations a dérivées
particlles. Une chose intéressante est que les algorithmes qui résolvent les problemes de
propagation des invariants de Riemann (comme p.cx. le Roe-solver élaboré par [Eul94))
sont toujours stables. Si des grilles de calcul décrivant la propagation de champs arbitraires

2Néanmoins, Le Maguer et al. ont trouvé que pour les lignes microrubans, les zones
absorbantes marchent trés bien [LeM97].
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par des matrices de répartition existent ct si elles peuvent ctre interpretées comme des
solveurs de Ricmann, des noeuds aux limites basés sur une approximation de I'équation
d’onde unidirectionnelle existent.

Pour simuler des problemes d'espace ouvert, nous proposons pour un futur travail le
developpement d'un pocud aux limites déerivant le flux des ondes quittant la grille limitée
de la méthode TLM. Le nocud doit étre cherché en formulant et résolvant le probleme de
Riemann correspondant.

Cette approche est trés génerale dans le sens ot la méthode I'ML serait conceptuellemat.
élargic afin de résoudre des équations a dérivées partielles arbitraires.  La méthode doit
d'abord étre formulée pour des grilles cartesiennes de maillage uniforme. Une généralisation
aux géometrics arbitraires en utilisant la géometrie différentielle devrait alors étre possible.

Nous notons qu'un noeud aux limites pour la méthode TLM, basé sur I'équation d'onde
unidirectionnelle, va toujours donner des réflexions indésirables venant d’une absorption
non parfaite des ondes (puisque I'équation d’onde unidirectionnclle peut sculement étre
approchée par une équation a dérivées partielles). L’avantage principal du développement
d'un nouveau type de nocud est - comme nous l'espérons - la stabilité de la méthode.



Chapitre 4

Application de la méthode TLM
en espace ouvert: Calcul des
parameétres [S;;] et des
diagrammes de rayonnement
des discontinuités des lignes
microrubans

Nous avons utilis¢ la méthode TLM pour caractériser les discontinuités des lignes de trans-
mission microruban. [ne discontinuité dans une ligne microruban est définie comme toute
variation de la section droite de la ligne dans la direction de propagation du signal. La
caractérisation est basée sur le calcul de la propagation ct de la répartition des signaux le
long des lignes de transmission pour des structures différentes.

[e signal injecté dans la structure est le méme pour tous les calculs: Uine excitation
gaussicone de la composante E, (voir figure 4.1) est appliquée dans une section droite
en dessous du ruban. La largeur de la gaussienne dans le temps est choisie telle que la
transformdée de Fourier tombe & 1 % de sa valeur maximale 4 la {réquence maximale de
travail; La fréquence maximale de travail est définie comme la [réquence pour laquelle la
longucur d'onde dans la zone de permittivité la plus élevé (ici le substrat de la ligne) est dix
fois plus grande que la largeur de la maille la plus grande. Pour tous les calculs nous avons
utilis¢ une grille avee un maillage unilorme.

145
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4.1 Etudes préliminaires: Influence du domaine de cal-
cul

Avant de débuter les caleuls nous nous sommes interessés aux questions suivantes:
1. Quel est linfluence de la hauteur du domaine de calcul sur le signal guideé 7
2. Quel est Ninfluence de la largeur du domaine de caleul sur le signal guidé ?

3. Quel est 'influence de la fréquence sur le signal guidé pour un domaine de caleul donné
2

4. Quel est I'influence de la permittivité ¢, du substrat sur le signal guidé pour un domaine
de calcul donné ?

5. Quel est l'influence du rapport entre la largeur du ruban et 'épaisscur du substrat sur
le signal guidé pour un domaine de calcul donné ?

Afin de pouvoir répondre a ces questions nous avons fait diverses simulations avec une
ligne de transmission microruban dont les dimensions caractéristiques sont montrées sur la
figure 1.1.

Les dimensions caractéristiques de la simulation sont la largeur w du ruban, I'épaisseur
h du substrat, la hauteur // de la zone libre au dessus du substrat ct la distance ¢ entre le
ruban et les bords latéraux du domaine de calcul. Les dimensions du domaine de calcul £ et
Il peuvent a priori dépendre de la permittivité ¢, du substrat et de la fréquence. 1'épaisseur
du ruban est supposée étre négligeable pour tous nos calculs.

4.1.1 Influence de la hauteur du domaine de calcul sur le signal
guidé

Nous avons d’abord fait varier la hauteur [ de la zone libre au dessus du substrat. Les
distances caractéristiques sont w =4;h =2; H =4,5,6,12;¢ = 9 (toutes les valeurs sont cn
nombre de nocuds). La valeur £ = 9 cst choisie telle que € > 2w, ce qui correspond a une
régle générale fondée sur l'expérience. Nous avons examiné l'effet de la variation de /f sur
le return-loss au bout de la ligne terminée par des conditions de charge adaptée.

Nous avons constaté une diminution du return loss pour /1 de l'ordre de 4 mailles et ce
pour des fréquences élevées (proches de la fréquence maximale de travail). Pour // > 4 nous
ne constatons aucun effet systématique sur le return-loss.

Il nous semble raisonnable que la distance H soit environ la méme que la largeur du
domaine de calcul determinée par ¢; Il reste alors a trouver la bonne valeur de .
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densité de puissance

eps r =2.0: 0 GHz
eps r = 2.0: 0 GHz

Figure 4.2:  Représentation 3D (a
gauche) et lignes de niveau (a droite):
Distribution de la puissance guidée
dans la section droite de la ligne mi-
croruban.

4.1.2 Influence de la largeur du domaine de calcul sur le signal
guidé

Au licu de choisir € > 2w, nous voulons déterminer £ (ct donc {1, ¢f. remarque ci-dessus) de
facon que la puissance guidée tombe & un taux de 7 % de sa valeur maximale (au centre de
la ligne) a lintéricur du domaine de calcul.

Nous avons alors tracé la puissance guidée a la [réquence 0 GHz dans la scction droite de
la ligne pour un domaine de calcul assez grand (w = 4;h = 2; I/ = 23;¢ = 20). Le résultat
est montré dans la figure 4.2: Le ruban se trouve a la hauteur y =2 (A =2) ct il va de -2 a
+2 (w = 4). L’échelle pour les lignes de niveau est logarithmique avee un valeur maximale
(blanche) au dessus de 1% ct un valeur minimale (noir) au dessous de 0.125%. Pour le taux
z on choisit a partir de ce graphique £ = 0.125 par exemple. Le critere pour le choix dn
domaine de calcul nous permet alors de tronquer le domaine lorsque la puissance guiddée est
inféricure 4 0.125 % de sa valeur maximale (au ceatre de la ligne).

Nous avons diminu¢ le domaine de caleul en un domaine dont les dimensions sont (w =
4: h = 2; H = 15, = 15). Le résultat pour la distribution de la puissance est pratiquemnent
le méme que pour le domaine de calcul plus grand. Nous concluons qu'une distance de 15
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eps r = 2.0: 60 GHz eps r = 2.0: 180 GHz

Figure 4.3: Distribution de la puissance
guidée dans la section drotte de la ligne
microruban pour 60 GHz (a gauche) et
180 G 11z (a droite).

nocuds entre le ruban et les limites du domaine de caleul est ici suflisamment grande pour
éviter un changement des résultats avee une variation des distances £ et f],

4.1.3 Influence de la fréquence sur le signal guidé pour un domaine
de calcul donné

La question se pose de =avoir =i la distribution de la puissance guidée dépend de la fréquence
de travail. Pour le maillage que nous avons utilisé la fréquence maximale de travail érait
80 GlHz La figure 1.3 montre que méme pour des fréquences au dessus de la fréquence
maximale de travail. la distribution de la puissance guidée par la ligne dans le domaine de
calenl ne change guere. Nous concluons que la détermination de la puissance guidée a la
fréquence 0 Glz est suflisante pour pouvoir fixer les distances minimales nécessaires entre
le ruban et les limites du domaine de calcul.

4.1.4 Influence de la permittivité ¢, du substrat sur le signal guidé
pour un domaine de calcul donné

Nous nous demandons maintenant quelle est influence de la permittivité ¢, du substrat
sur le signal. Pour un maillage donné, nous savons que la fréquence maximale de travail et
donc la dispersion du signal dépend de ¢, Nous avons choisi une excitation pour ¢, = 4.8
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et nous avons fail avee cette excitation 5 caleuls avee ¢, = 2.0.4.8,8.0. 16.0, 32.0. L’effet sur
la dispersion du signal est montré dans la figure 4.4: La figure montre la tension cn fonction
du temps a une distance de 80 nocuds de 'excitation. Pour ¢, = 4.8 déja le signal st
légerement deformé. Pour ¢, = 16 P'effet du maillage comme filtre passe-bas est clairement
visible.

L'effet. de ¢ sur la distribution de la puissance guidée est montré dans la figure 4.5: La
variation de ¢,. n'est pas tris visible dans la puissance guidée, bien que pour ces valeurs de
¢ la dispersion dans la grille n'est pas du tout négligeable. Nous concluons d'une part que
la distribution de la puissance guidée dans le guide ne donne aucune indication sur Perreur
commise due a la dispersion du signal dans la grille, et d’autre part, que la permittivité
influence tres peu la distribution de la puissance. Le choix de 2 et 1 est donc indépendant.
de la permittivité.

4.1.5 Influence du rapport entre la largeur du ruban et 1’épaisseur
du substrat sur le signal guidé pour un domaine de calcul
donné

Comme dernicre étude nous comparons pour (w = 4; [l = 23;£ = 20) deux rapports entre
la largeur du ruban et Uépaisscur du substrat w/h = 2 respectivement w/h = 1. Le résultat
est montré dans la figure 4.6: On en déduit que si on augmente 'épaisscur 2 du substrat,
les champs se distribuent sur une surface plus grande dans le domaine de caleul. Garder
le critere & = 0.125 demanderait ict un domaipre de caleul encore beaucoup plus grand que
celui utilisé. Si on garde la distance de 15 nocuds entre le ruban et les limites, on voit que
la puissance tombe quand méme au dessous de 1 % de sa valeur maximale. Pour des raisons
d’espace mémoire nous proposons d'utiliser 15 noeuds, sachant que l'erreur introduite par
les limites va étre d’autant plus grande que le rapport entre w et b est. grand. D’autre part,
pour les simulations I'épaisscur A ne doit pas étre choisie trop petite pour ne pas avoir unc
erreur de discrétisation trop grande. Sion veut simuler des rapport w/h grands, on sera
donc obligé de choisir plus de 4 nocuds afin de discrétiser la largeur du ruban. Il en résulte
une demande de plus de 15 nocuds de distance entre le ruban et les limites, et donc une
demande d’espace mémoire plus importante pour des grands rapports entre w et h.

4.1.6 Conclusion

Nous avons étudié 'influence des différent parametres (w; h; ¢,; F; €) déterminant la simula-
tion des lignes microrubans. 1)’abord nous avons testé 'influence de la hauteur du domaine
de calcul F sur le return-loss au bout d’une ligne microruban. Nous trouvons que le return-
loss est peu sensible a la variation de ce parametre. Nous avons alors décidé d'utiliser la
puissance guidée comme critere afin d’estimer les distances H et € qui déterminent la taille
du domaine de calcul.

Avec le critere imposant que la puissance guidée tombe a une valeur de 0.125 % de sa
valeur maximale a 'intéricur du domaine de calcul, pour w = 4 et w/h = 2, il en découle
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Figure 4.5: Distribulion de la puissance
guidéc dans la section droite de la ligne
microruban pour «, = 8.0 (4 gauche) ct
. =32.0 (a droite).
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Figure 1.6: Distribution de la puissance

quidée dans la section drowe de la ligne
microruban pour w/h =2 (a gauche) et
w/h =1 (a drite).

unce distance nécessaire de 15 nocuds entre le ruban et les limites du domaine de calcul.
Cetre distance ne dépend ni de la fréquence. ni de la permittivité du substrat. Par contre, si
on augmente 'épaisseur A du substrat les champs se distribuent sur une surface plis grande
dans le domaine de caleul.

Avee nne distance de 15 nocuds entre le ruban et les limites, w = 4 ¢t w/h = 1 on
trouve que la puissance tombe au dessous de 1 % de sa valeur maximale. ce qui nous semble
toujours acceptable.

Nous proposons de garder une distance eatre le ruban et les limites du domaine de calcul
d’au moins 15 nocuds pour un ruban de largeur 4 nocuds. Les champs vont etre d’autant
plus confinés autour du ruban que le rapport w/h sera grand. D'autre part, on désire avoir
plusicurs nocuds entre le ruban et la masse afin de diminuer erreur de la discrétisation. Nous
utilisons dans la suite de la Seetion un rapport w/h = 4/3, ce qui présente un compromis
entre Perreur due a la discrétisation et erreur due aux limites du domaine de calcul.

4.2 Calcul des parametres [S;;] pour deux lignes micro-
rubans couplées

Afin de calculer les effets de couplage dans des circuits hautes fréquences nous utilisons une
technique de modélisation électromagnétique basée sur la meéthode TLM. Cette méthode
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:xqcés 3
w2=2mm Lc=30mm _)_i =16 mm
acces 4 > ‘ o) ' acces 2
A L2=20mm
wl=2mm
L1=20 Substrat Verre teflon €7=2.55
épaisseur h=1.35mm
acces 1

Figure A.7: Structure analysée: coudes
et lignes icrorubans couplés

permet de calculer la distribution du champ électromagnétique dans la structure ev d'en
déduire les parametres S dans les plans d’acces préalablement définis.

La figure 4.7 montre la structure étudiée. Elle consiste en deux lignes couplées avec deux
coudes en entrée-sortie. Le couplage et I'influence des coudes sur le couplage sont érudics
cn excitant la structure en 1, puis cn 2 et en enregistrant les signaux de couplage arricre et
de couplage avant.

Afin d’évaluer les parametres de couplage, la structure est excitée a l'acees 1 puis a lacees
2. L'excitation temporelle est une gaussienne de largeur & mi-hauteur égale a 20 ps. lLes
parametres de 'excitation sont choisis en concordance avece la discrétisation temporelle et
spatiale nécessaires a la simulation par la méthode TLM. Les parametres S sont calculés a
partir des signaux réfléchis et transmis dans le domaine temporel.

La simulation TLM donne accés aux tensions et courants temporcels aux acces de la
structure. Les parametres S sont calculés ensuite en utilisant une transformée de Fourier
directe. Par exemple pour un quadripole:

V()2 ()
V@)1 (@)

5 = [V
ol = | b
Vi(w) I (w)

Les indices i, r, t désignent respectivement les signaux incidents, réfléchis et transmis. Ces
différents signaux sont déterminés a partir des signaux observables obtenus par la méthode
TLM en utilisant des fenétres temporelles appropriées. L'utilisation des fenétres temporelles
a permis de faire les calculs sans ligne de référence. La figure 4.8 montre la tension observée
a Pacces 1. On distingue bien le signal incident et la réflexion sur le coude.
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tension

» |
0 100 200 300 400 500

temps [ps]

I'igure 4.8 Fremple de signaur inci-
dent el réfléchi observés a lacces 1
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— S31
ceeee S42
couplage avant — = =531 mesuré

paramétre S [dB]

-50 '
fraquence [GHZ]

Figure  4.9: Comparatson des
paramétres Sy, Sqp simulés et S3y nesuré.

Nous présentons ici les paramétres S pour le dispositif de la figure 4.7 dans la gammme
de fréquence de 0 a 10 GHz. Les figures 4.9 (4.10) montrent les parametres Sz (S41), Si2
(S32) simulés ainsi que S3y (S4;) mesurés de 0 2 10 GHz. En vue de la comparaison avee
des mesures, ces paramétres S simulés ont été ‘renormalisés’ par rapport a 50 Ohm. Sur
ces figures, on observe une assez bonne concordance entre les simulations et la mesure. La
comparaison cntre les paramétres S3; et Sy permet d’évaluer Pinfluence des coudes sur le
couplage. L'écart observé sur ces parametres étant variable en fonction de la fréquence, une
analyse des signaux temporels est plus significative. La figure 4.11 montre la comparaison
des tensions de couplage avant, observés sur 'acces 3 lorsque 'excitation est cen 1, et sur
I'acces 4 lorsqu'on excite en 2. On note une différence d’amplitude d’un facteur 3.5 environ.
Cette différence est due principalement a la dégradation du temps de montée d'une part au
niveau des coudes pour le signal incident sur 'acces 1, et d’autre part pour le signal sortant
sur 'acces 3.
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couplage avant —---—----signal 2-4
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Figure 4.11: Influence des coudes sur
les signauz de couplage avant (ezcita-
tion d’amnplitude 4).
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Figure 4.12: Vue 8D du domaine de
calcul pour le calcul des diagrammes
de rmayonnement en champ proche. La
boite enfermant la discontinuité est
constituée de 5 plans de sortie.

4.3 Calcul du diagramme de rayonnement en champ
proche pour le coude

Dans la figure 4.12 nous montrons la disposition pour les calculs du diagramme de rayon-
nement en champ proche. Le coude est testé dans 5 plans de sortie qui forment une boite
autour de la discontinuité. Dans ces plans de sorties, le vecteur de Poynting est calculé dans
le domaine fréquenticl par transformation de Fourier. Les diagrammes de rayonnement en
région proche sont alors obtenus en ¢valuant le flux du puissance sur un cercle dans le plan
x-z et sur un cercle dans le plan x-y (voir la figure 4.12).

Des lignes de niveau indiquant le flux de puissance par les murs de la boite qui enferment
la discontinuité sont montrées dans la figure 4.13. Les figures montrent des zones de la
puissance passant par les parois qui enferment la discontinuité. Les graphiques 2 10 Gz
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-40 -10 o 20 40 -40 =10 Q 0 40 -40  -20 a 20 40

Figure 4.13: Lignes de niveau de la
puissance sortant la boite.

ct a 20 GHz sont mis & la meéme échelle: Le lobe supéricur disparait a I'échelle de 20 Gz,
Pour le graphique a 30 Gllz nous avons changé l'échelle pour montrer qu'il y a toujours un
lobe au dessus. Ce lobe est faible comparé a la puissance rayonnée frontalement.

Cela peut étre vu encore plus clairement dans les diagrammes de rayonnement en région
proche montrés dans la figure 4.14. Les lobes ont été normalisés en unités arbitraires cn
divisant par la puissance entrant a la fréquence correspondante. Nous voyons que le lobe
frontal (plan x-z) devient de plus en plus important avec l'augmentation de la fréquence.
Par contre, l¢ lobe du dessus (plan x-y) devient de moins en moins important comparé au
lobe frontal. Pour de basses fréquences il apparait aussi un petit lobe en direction contraire
de la direction du coude.

La boite nous a permis de définir un troisiéme parametre décrivant la puissance perduc
due au rayonnement du coude. La puissance rayonnée est obtenue en intégrant le (lux du
vecteur de Poynting autour de la boite. Afin de pouvoir séparer le rayonnement des signaux
passants nous avons supprimé les surfaces ou la ligne de transmission passe.

Les résultats sur le parametre de transmission, le parametre de réflexion ct le parametre
de rayonnement sont montrés dans la figure 4.15. Le rayonnement commence avec la réflexion
ct domine a partir de 30 GHz. La somme des trois paramétres doit étre égale 4 1 a cause de
la conservation de I'énergie. Dans le calcul, elle est plus petite que 1. Cela indique qu'une

partic du rayonnement est sorti par les plans supprimés dans l'intégration du flux du vecteur
de Poynting.
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10 GHz

20 GHz

30 GHz

N o waOWw&YAN L

- -
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Figure 114 Diagranunes de myon-
nement. en champ proche dans le plan
-z (0 gauche) el dans le plan 1-y (a
droite). Dans le plan -z le coude vient
de la gauche et va vers le bas.  Dans
le. plan -y le top du coude se (rouce @
droile du diagranune.
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4.4 Calcul du diagramme de rayonnement en champ
lointain pour le coude

Les diagrammes de rayonnement en champ lointain sont obtenus i partir des courants de
surface sur la ligne cn utilisant la théorie des potentiels. Les courants ont été caleulés le
long d'une surface de 30 x 30 mailles. Le plan de masse est simulé par introduction de
courants miroirs (de signe contraire). Les courants sur la ligne sont obtenus en chaque point
a partir du champ magnétique en utilisant la loi &’Ampére J = [ dl oit €' est un chemin
de contour antour du point. Le potentiel vecteur peut alors étre caleulé par:

l exp(—JjkR)
w) = — J(w) ————dV .
Alw) = = /v“ (W) —F (4.1)
ol k = w/c est le vecteur d'onde et R est la distance entre le courant J(w) et le

point d’évaluation du potenticl. Le potentiel vecteur nous permet de calculer les champs
éléctriques et magnétiques lointains

(W) = ﬁwm@—tﬁvwﬂwn (4.2)

H(w)

19 x Aw) (4.3)
n

Dans I'Eqn. 4.1 'intégration sur le volume V' doit étre faite en intégrant sur la surface et
la surface miroir comme discuté au dessus. A partir des champs éléctriques et magnétiques
le flux de puissance peut ¢tre calculé via le theoréme de Poynting

Plw) = %/3?(5 x H*)ds (4.4)
ou R désigne la partic réelle.

Les diagrammes de rayonnemment en champ lointain sont montrés dans la figure 4.16.
Les lobes ont tous été normalisés au moyen d'une division par la puissance entrant i la
fréquence correspondante. Nous voyons d'abord que le rayonnement dans le plan du coude
(plan x-z) peut étre negligé par rapport au rayonnement au dessus du coude (plan x-y).
Le lobe du dessus (plan x-y) devient de plus en plus important avec I'augmentation de la
fréquence. Le diagramme montre le lobe artificiel du dessous, symétrique du lobe du dessus,
qui n’existe pas cn realité. Ce lobe vient de la technique des courants miroirs utilisée.

4.5 Conclusion

Dans les sections précédentes nous avons regardé Uapplication de la méthode TLM en espace
ouvert. Pour obtenir la condition de I'espace ouvert nous avons utilisé la condition de la
charge adaptée aux limites du domaine de calcul. Nous avons examiné comment il faut
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. . L J 10 GHz lan °*4y* ® 10 GHZ
plan °HZ o 20GHz P dessus O 20 GHz
0.002 A 230GH2 A
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Figure 4.16: Diagrammes de rmayon-
nement dans le chamnp lointain dans le
plan z-z (& gauche) et dans le plan z-
y (@ droite). Des échelles (unités ar-
bitraires) nous concluons que le ray-
onnement dans le plan z-z peut étre
négligé.
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choisir la hautcur et la largeur du domaine de caleul pour que le signal guidé le long de la
ligne ne soit pas perturbé par les limites du domaine de caleul. Nous avons également étudié
l'influence de la permittivité e, de la [réquence et du rapport eatre la largeur du ruban
et I'épaisseur du substrat w/h. Nous avons trouvé que pour une largeur w = 4mailles une
distance de 15 nocuds est suffisante pour que le signal guidé tombe jusqu'a 1% de sa valeur
maximale aux limites du domaine de calcul. On a Timpression que dans ce cas le signal
n’est pas perturbé par les conditions aux limites de charge adaptée. La distance ne dépend
ni de la fréquence ni de la permittivité du substrat.

Comme exemple d’application nous avons fait des calculs pour deux lignes micro-rubans
couplées et pour un coude. Dans le cas des deux lignes micro-rubans couplées nous nous
sommes interessés au parametres S de couplage ainsi qu'a 'influence des coudes sur le
couplage. Pour comparer, nous avons mesuré les parameétres de couplage. Les résultats
de caleul sont en bon accord avee les résultats de mesure. En comparant les signaux de
couplage en avant nous trouvons qu'il y a une influence non négligeable des coudes sur le
signal en temporel.

Dans le cas du coude nous nous sommes interessés aux diagrammes de rayonnement
en champ proche et en champ lointain. Pour chaque plan de sortie nous avons calculé
la puissance qui sort. Nous avons presenté les résultats sous forme des diagrammes de
rayonnement. On trouve des lobes frontaux et des lobes vers le haut. En plus, notre
méthode nous a permis de calculer la partie transmise, la partie réfléchie ct la partie rayonnée
de la puissance. On voit que la partie rayonnée devient de plus en plus importante en
augmentant la fréquence. Pour obtenir le champ lointain, nous avons calculé les courants
sur les métallisations du coude. A partir des courants on obtient le potenticl vecteur et ainsi,
les composantes [ et /f du champ électromagnétique a grand distance. On calcule alors le
flux de puissance via le théoreme de Poynting ce qui donne le diagramme de rayonnement
en champ lointain. Nous avons trouvé que le coude rayonne essentiellement vers le haut. Le
rayonnement augmente lorsqu’on augmente la fréquence.
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Chapitre 5

Conclusion

La méthode TLM permet le calcul des champs électromagnétiques qui se propagent le long
des lignes micro-rubans et des discontinuités des lignes micro-rubans. Elle permet donc en
particulicr I'étude du couplage entre des lignes et du rayonnement des discontinuités. Pour
I'étude du rayonnement il faut utiliser la méthode TLM dans l'espace ouvert, c'est 3 dire
que les ondes créées a l'intérieur du domaine de calcul doivent sortir librement de la grille.

Pour la méthode TLM une condition d'espace ouvert est déja connue et largement utilisée:
la charge adaptée. Cependant, dans la littérature d’autres conditions sont décrites. Pour la
méthode des différences finies par exemple des méthodes d’extrapolation ont été proposées
ainsi que l'introduction de zones d’absorption. Notre premier objectif était de voir si on
pourrait améliorer la méthode TLM en espace ouvert en utilisant une de ces conditions au
licu de la charge adaptée qui possede des réflexions résiduelles.

L.es premiers essais ont été faits avec une grille en 2 dimensions des noeuds condensés
symétriques.  Pour cela nous avons court-circuité les nocuds condensés symétriques dans
la troisieme direction. Nous avons appliqué une condition d'extrapolation, la condition de
Lindmann, au bout de la grille et nous avons mesuré le taux de réflexion: La réflexion peut
étre réduite jusqu’a 0.025% cn augmentant l'ordre de I'approximation dans nos calculs. Ce
résultat était prometteur et nous a encouragé a essayer ces conditions dans une grille en 3
dimensions avee le nocud condensé symétrique.

Pour les calculs ¢n 3 dimensions nous avons utilisé un guide d’onde terminé dans la section
droite par unc paroi absorbante. )’abord, nous avons essayé des conditions d’extrapolation
espace-temps et la condition de Lindmann. Pour les conditions d’extrapolation espace-temps
I’absorption est meilleure lorsqu'on augmente l'ordre d'extrapolation. Pour la condition de
Lindmann ce n'est plus vrai. Dans tous les cas, 'absorption est meilleure qu’avec la condition
classique: la charge adaptée. La condition d'extrapolation espace-temps donne des résultats
aussi bons que la condition de Lindmann, mais est limitée a l'ordre 2. Nous avons done
cherché une condition qui pourrait réduire la réflexion encore plus en augmentant l'ordre.
Pour cela nous avons testé unc formulation équivalente a la condition de Lindmann. la
formulation de Higdon-Keys. Cependant, pour cette formulation nous avons trouvé que
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I'absorption diminue en augmentant ordre. Nous avons essayé d’améliorer cette condition
en insérant des constantes de dissipation numedrique et en changeant les paramatres de la
condition (les angles d'absorption totale). Dans tous les cas les résultats n'étaicnt pas
meilleurs qu'avee la charge adaptée.

Nous avons alors essayé d'améliorer les résultats obtenus avee la condition d'extrapolation
espace-temps en appliquant une méthode d’annihilation des modes parasites & la fréquence
Nyquist de la grille. Cela n’a apporté aucune amélioration.

Une autre méthode d'absorption des ondes aux limites consiste & introduire des zones
d’absorption aux limites du domaine de calcul. On peut adapter I'impédance d’une telle
zone a l'impédance de l'air en introduisant une conductivité magnétique. Pour cela, nous
avons changé les éléments de la matrice du noeud condensé symétrique. Avec une zone de 10
nocuds nous avons obtenues une absorption comparable & la condition de la charge adaptée.
La méthode des zones absorbantes n'est done pas une amélioration par rapport a la charge
adaptée, qui est plus simple a réaliser.

Jusqu'ici la meilleure condition que nous ayons trouvé est la condition d'extrapolation
espace-temps. Cependant, quand nous avons appliqué la condition d'extrapolation espace-
temps tout autour du domaine de calcul d’une ligne micro-ruban, nous nous sommes aperc¢us
que méme la condition d'extrapolation espace-temps d'ordre 1 est instable. La condition
d'extrapolation espace-temps n’est donc pas utilisable pour les calculs des lignes micro-
ruban, de méme la condition de Lindmann, qui peut étre regardée comme unc amélioration
de la condition espace-temps du premier ordre.

Nous conseillons done d'utiliser pour des calculs sur les lignes micro-rubans la condition
la plus simple, la charge adaptée.

Pour la suite nous avons examiné quelle est la distance qu'il faut garder entre le ruban et
les limites du domaine de calcul pour ne pas avoir une perturbation dans le flux de puissance.
Nous avons trouvé que, indépendemment de la permittivité et de la fréquence, une distance
de 15 nocuds est suflisante pour un ruban de largeur w = 4 mailles.

Nous avons montré comment on peut calculer le couplage pour deux lignes micro-rubans
couplées. Les résultats étaient en bon accord avec les mesures que nous avons faites. Dans
les calculs on voit bien I'influence des coudes de la structure considérée.

Finalement nous avons montré comment on peut calculer les diagrammes de rayonnement.
pour le champ proche et pour le champ lointain pour un coude. Pour le¢ champ proche on
obtient des lobes frontaux et des lobes au dessus du coude. Pour le champ lointain on obtient
qu'un scul lobe au dessus du coude. Les calculs ont tous été faits avec la condition de charge
adaptéc.
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Résumé:

Ce travail est constitué de 3 parties principales.  Apres une introduction a Nanalyse
des lignes micro-ruban sous approximation de propagation des signaux cn mode TN o
premicre partie traite d'une méthode d'analyse dynamique valable pour des distributions de
champs qui peuvent méme étre floignées du mode TIENML la méthode 'TLN (‘Transmission
Line Matrix Mcthod). introduite 1971 par Johns et al. La méthode TLN est présentée
comme un processus de répartition basé sur la decomposition des ¢quations de Maxwell
sous forme matricicelle.

Dans une deuxieme partic nous traitons de la possibilité d'ntiliser la méthode TN
dans les problemes dits de Pespace ouvert, ¢'est a dire des espaces de caleul limités par des
parois absorbant toute I'énergie quittant le domaine de calcul. Cela est nécessaire alin de
réduire 'espace mémoire nécessaire pour calculer par exemple des effets de rayonnement ct
de diffraction.

Dans la troisitme partic nous appliquons la méthode TLN pour caleuler les parametres
des différentes discontinuités micro-ruban. en particulier les effets de couplage et de ray-
onnement. Au moyen d’une transformation des champs proches en champs lointains nous
déterminons également les diagrammes de rayonnement correspondants.

I’ensemble du travail se situe dans le cadre des problémes de compatibilité électromagnduique.
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